Invariant differential operators and an homomorphism of Harish-Chandra
Journal of the American Mathematical Society, Tome 08 (1995) no. 2, pp. 365-372

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1995_1284849_8,
     author = {Levasseur, T. and Stafford, J. T.},
     title = {Invariant differential operators and an homomorphism of {Harish-Chandra}},
     journal = {Journal of the American Mathematical Society},
     pages = {365--372},
     publisher = {mathdoc},
     volume = {08},
     number = {2},
     year = {1995},
     doi = {10.1090/S0894-0347-1995-1284849-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1284849-8/}
}
TY  - JOUR
AU  - Levasseur, T.
AU  - Stafford, J. T.
TI  - Invariant differential operators and an homomorphism of Harish-Chandra
JO  - Journal of the American Mathematical Society
PY  - 1995
SP  - 365
EP  - 372
VL  - 08
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1284849-8/
DO  - 10.1090/S0894-0347-1995-1284849-8
ID  - 10_1090_S0894_0347_1995_1284849_8
ER  - 
%0 Journal Article
%A Levasseur, T.
%A Stafford, J. T.
%T Invariant differential operators and an homomorphism of Harish-Chandra
%J Journal of the American Mathematical Society
%D 1995
%P 365-372
%V 08
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1284849-8/
%R 10.1090/S0894-0347-1995-1284849-8
%F 10_1090_S0894_0347_1995_1284849_8
Levasseur, T.; Stafford, J. T. Invariant differential operators and an homomorphism of Harish-Chandra. Journal of the American Mathematical Society, Tome 08 (1995) no. 2, pp. 365-372. doi: 10.1090/S0894-0347-1995-1284849-8

[1] Harish-Chandra Differential operators on a semisimple Lie algebra Amer. J. Math. 1957 87 120

[2] Harish-Chandra Invariant differential operators and distributions on a semisimple Lie algebra Amer. J. Math. 1964 534 564

[3] Krause, Gã¼Nter R., Lenagan, Thomas H. Growth of algebras and Gelfand-Kirillov dimension 2000

[4] Levasseur, T., Stafford, J. T. Rings of differential operators on classical rings of invariants Mem. Amer. Math. Soc. 1989

[5] Mcconnell, J. C., Robson, J. C. Noncommutative Noetherian rings 1987

[6] Montgomery, Susan Fixed rings of finite automorphism groups of associative rings 1980

[7] Wallach, Nolan R. Invariant differential operators on a reductive Lie algebra and Weyl group representations J. Amer. Math. Soc. 1993 779 816

Cité par Sources :