Vector bundles and 𝑆𝑂(3)-invariants for elliptic surfaces
Journal of the American Mathematical Society, Tome 08 (1995) no. 1, pp. 29-139

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1995_1273414_4,
     author = {Friedman, Robert},
     title = {Vector bundles and {\dh}‘†{\dh}‘‚(3)-invariants for elliptic surfaces},
     journal = {Journal of the American Mathematical Society},
     pages = {29--139},
     publisher = {mathdoc},
     volume = {08},
     number = {1},
     year = {1995},
     doi = {10.1090/S0894-0347-1995-1273414-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1273414-4/}
}
TY  - JOUR
AU  - Friedman, Robert
TI  - Vector bundles and 𝑆𝑂(3)-invariants for elliptic surfaces
JO  - Journal of the American Mathematical Society
PY  - 1995
SP  - 29
EP  - 139
VL  - 08
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1273414-4/
DO  - 10.1090/S0894-0347-1995-1273414-4
ID  - 10_1090_S0894_0347_1995_1273414_4
ER  - 
%0 Journal Article
%A Friedman, Robert
%T Vector bundles and 𝑆𝑂(3)-invariants for elliptic surfaces
%J Journal of the American Mathematical Society
%D 1995
%P 29-139
%V 08
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1273414-4/
%R 10.1090/S0894-0347-1995-1273414-4
%F 10_1090_S0894_0347_1995_1273414_4
Friedman, Robert. Vector bundles and 𝑆𝑂(3)-invariants for elliptic surfaces. Journal of the American Mathematical Society, Tome 08 (1995) no. 1, pp. 29-139. doi: 10.1090/S0894-0347-1995-1273414-4

[1] Atiyah, M. F. Vector bundles over an elliptic curve Proc. London Math. Soc. (3) 1957 414 452

[2] Bauer, Stefan Some nonreduced moduli of bundles and Donaldson invariants for Dolgachev surfaces J. Reine Angew. Math. 1992 149 180

[3] Bauer, Stefan Diffeomorphism types of elliptic surfaces with 𝑝_{𝑔} J. Reine Angew. Math. 1994 89 148

[4] Donaldson, S. K. Irrationality and the ℎ-cobordism conjecture J. Differential Geom. 1987 141 168

[5] Donaldson, S. K., Kronheimer, P. B. The geometry of four-manifolds 1990

[6] Fintushel, Ronald, Stern, Ronald J. 𝑆𝑂(3)-connections and the topology of 4-manifolds J. Differential Geom. 1984 523 539

[7] Friedman, Robert Rank two vector bundles over regular elliptic surfaces Invent. Math. 1989 283 332

[8] Friedman, Robert, Morgan, John W. On the diffeomorphism types of certain algebraic surfaces. I J. Differential Geom. 1988 297 369

[9] Friedman, Robert, Morgan, John W. Smooth four-manifolds and complex surfaces 1994

[10] Fulton, William Intersection theory 1984

[11] Kametani, Yukio, Sato, Yoshihisa 0-dimensional moduli space of stable rank 2 bundles and differentiable structures on regular elliptic surfaces Tokyo J. Math. 1994 253 267

[12] Kotschick, Dieter On manifolds homeomorphic to 𝐶𝑃²#8\overline{𝐶𝑃}² Invent. Math. 1989 591 600

[13] Kotschick, D., Morgan, J. W. 𝑆𝑂(3)-invariants for 4-manifolds with 𝑏⁺₂ J. Differential Geom. 1994 433 456

[14] Kronheimer, P. B., Mrowka, T. S. Recurrence relations and asymptotics for four-manifold invariants Bull. Amer. Math. Soc. (N.S.) 1994 215 221

[15] Li, Jun Algebraic geometric interpretation of Donaldson’s polynomial invariants J. Differential Geom. 1993 417 466

[16] Morgan, John W. Comparison of the Donaldson polynomial invariants with their algebro-geometric analogues Topology 1993 449 488

[17] Morgan, John W., Mrowka, Tomasz S. On the diffeomorphism classification of regular elliptic surfaces Internat. Math. Res. Notices 1993 183 184

[18] Morgan, John W., O’Grady, Kieran G. Differential topology of complex surfaces 1993

[19] O’Grady, Kieran G. Algebro-geometric analogues of Donaldson’s polynomials Invent. Math. 1992 351 395

[20] Qin, Zhenbo Equivalence classes of polarizations and moduli spaces of sheaves J. Differential Geom. 1993 397 415

[21] Serre, Jean-Pierre Cohomologie Galoisienne 1973

[22] Grothendieck, A. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II Inst. Hautes Études Sci. Publ. Math. 1963 91

Cité par Sources :