On the locus of Hodge classes
Journal of the American Mathematical Society, Tome 08 (1995) no. 2, pp. 483-506

Voir la notice de l'article provenant de la source American Mathematical Society

Let $S$ be a nonsingular complex algebraic variety and $\mathcal {V}$ a polarized variation of Hodge structure of weight $2p$ with polarization form $Q$. Given an integer $K$, let ${S^{(K)}}$ be the space of pairs $(s,u)$ with $s \in S$, $u \in {\mathcal {V}_s}$ integral of type $(p,p)$, and $Q(u,u) \leq K$. We show in Theorem 1.1 that ${S^{(K)}}$ is an algebraic variety, finite over $S$. When $\mathcal {V}$ is the local system ${H^{2p}}({X_s},\mathbb {Z})$/torsion associated with a family of nonsingular projective varieties parametrized by $S$, the result implies that the locus where a given integral class of type $(p,p)$ remains of type $(p,p)$ is algebraic.
@article{10_1090_S0894_0347_1995_1273413_2,
     author = {Cattani, Eduardo and Deligne, Pierre and Kaplan, Aroldo},
     title = {On the locus of {Hodge} classes},
     journal = {Journal of the American Mathematical Society},
     pages = {483--506},
     publisher = {mathdoc},
     volume = {08},
     number = {2},
     year = {1995},
     doi = {10.1090/S0894-0347-1995-1273413-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1273413-2/}
}
TY  - JOUR
AU  - Cattani, Eduardo
AU  - Deligne, Pierre
AU  - Kaplan, Aroldo
TI  - On the locus of Hodge classes
JO  - Journal of the American Mathematical Society
PY  - 1995
SP  - 483
EP  - 506
VL  - 08
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1273413-2/
DO  - 10.1090/S0894-0347-1995-1273413-2
ID  - 10_1090_S0894_0347_1995_1273413_2
ER  - 
%0 Journal Article
%A Cattani, Eduardo
%A Deligne, Pierre
%A Kaplan, Aroldo
%T On the locus of Hodge classes
%J Journal of the American Mathematical Society
%D 1995
%P 483-506
%V 08
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1273413-2/
%R 10.1090/S0894-0347-1995-1273413-2
%F 10_1090_S0894_0347_1995_1273413_2
Cattani, Eduardo; Deligne, Pierre; Kaplan, Aroldo. On the locus of Hodge classes. Journal of the American Mathematical Society, Tome 08 (1995) no. 2, pp. 483-506. doi: 10.1090/S0894-0347-1995-1273413-2

[1] Cattani, Eduardo, Kaplan, Aroldo Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure Invent. Math. 1982 101 115

[2] Cattani, Eduardo, Kaplan, Aroldo Degenerating variations of Hodge structure Astérisque 1989

[3] Cattani, Eduardo, Kaplan, Aroldo, Schmid, Wilfried Degeneration of Hodge structures Ann. of Math. (2) 1986 457 535

[4] Deligne, Pierre Équations différentielles à points singuliers réguliers 1970

[5] Topics in transcendental algebraic geometry 1984

[6] Schmid, Wilfried Variation of Hodge structure: the singularities of the period mapping Invent. Math. 1973 211 319

Cité par Sources :