On the locus of Hodge classes
Journal of the American Mathematical Society, Tome 08 (1995) no. 2, pp. 483-506
Voir la notice de l'article provenant de la source American Mathematical Society
Let $S$ be a nonsingular complex algebraic variety and $\mathcal {V}$ a polarized variation of Hodge structure of weight $2p$ with polarization form $Q$. Given an integer $K$, let ${S^{(K)}}$ be the space of pairs $(s,u)$ with $s \in S$, $u \in {\mathcal {V}_s}$ integral of type $(p,p)$, and $Q(u,u) \leq K$. We show in Theorem 1.1 that ${S^{(K)}}$ is an algebraic variety, finite over $S$. When $\mathcal {V}$ is the local system ${H^{2p}}({X_s},\mathbb {Z})$/torsion associated with a family of nonsingular projective varieties parametrized by $S$, the result implies that the locus where a given integral class of type $(p,p)$ remains of type $(p,p)$ is algebraic.
@article{10_1090_S0894_0347_1995_1273413_2,
author = {Cattani, Eduardo and Deligne, Pierre and Kaplan, Aroldo},
title = {On the locus of {Hodge} classes},
journal = {Journal of the American Mathematical Society},
pages = {483--506},
publisher = {mathdoc},
volume = {08},
number = {2},
year = {1995},
doi = {10.1090/S0894-0347-1995-1273413-2},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1273413-2/}
}
TY - JOUR AU - Cattani, Eduardo AU - Deligne, Pierre AU - Kaplan, Aroldo TI - On the locus of Hodge classes JO - Journal of the American Mathematical Society PY - 1995 SP - 483 EP - 506 VL - 08 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1273413-2/ DO - 10.1090/S0894-0347-1995-1273413-2 ID - 10_1090_S0894_0347_1995_1273413_2 ER -
%0 Journal Article %A Cattani, Eduardo %A Deligne, Pierre %A Kaplan, Aroldo %T On the locus of Hodge classes %J Journal of the American Mathematical Society %D 1995 %P 483-506 %V 08 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1273413-2/ %R 10.1090/S0894-0347-1995-1273413-2 %F 10_1090_S0894_0347_1995_1273413_2
Cattani, Eduardo; Deligne, Pierre; Kaplan, Aroldo. On the locus of Hodge classes. Journal of the American Mathematical Society, Tome 08 (1995) no. 2, pp. 483-506. doi: 10.1090/S0894-0347-1995-1273413-2
[1] , Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure Invent. Math. 1982 101 115
[2] , Degenerating variations of Hodge structure Astérisque 1989
[3] , , Degeneration of Hodge structures Ann. of Math. (2) 1986 457 535
[4] Ãquations différentielles à points singuliers réguliers 1970
[5] Topics in transcendental algebraic geometry 1984
[6] Variation of Hodge structure: the singularities of the period mapping Invent. Math. 1973 211 319
Cité par Sources :