Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1995_1266736_4,
     author = {Frenkel, Edward and Szenes, Andr\~A{\textexclamdown}s},
     title = {Crystal bases, dilogarithm identities and torsion in algebraic {\dh}{\textthreequarters}-theory},
     journal = {Journal of the American Mathematical Society},
     pages = {629--664},
     publisher = {mathdoc},
     volume = {08},
     number = {3},
     year = {1995},
     doi = {10.1090/S0894-0347-1995-1266736-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1266736-4/}
}
                      
                      
                    TY - JOUR AU - Frenkel, Edward AU - Szenes, András TI - Crystal bases, dilogarithm identities and torsion in algebraic ð¾-theory JO - Journal of the American Mathematical Society PY - 1995 SP - 629 EP - 664 VL - 08 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1266736-4/ DO - 10.1090/S0894-0347-1995-1266736-4 ID - 10_1090_S0894_0347_1995_1266736_4 ER -
%0 Journal Article %A Frenkel, Edward %A Szenes, András %T Crystal bases, dilogarithm identities and torsion in algebraic ð¾-theory %J Journal of the American Mathematical Society %D 1995 %P 629-664 %V 08 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1995-1266736-4/ %R 10.1090/S0894-0347-1995-1266736-4 %F 10_1090_S0894_0347_1995_1266736_4
Frenkel, Edward; Szenes, András. Crystal bases, dilogarithm identities and torsion in algebraic ð¾-theory. Journal of the American Mathematical Society, Tome 08 (1995) no. 3, pp. 629-664. doi: 10.1090/S0894-0347-1995-1266736-4
[1] , , Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities J. Statist. Phys. 1984 193 266
[2] Higher regulators and values of ð¿-functions of curves Funktsional. Anal. i Prilozhen. 1980 46 47
[3] The dilogarithm and extensions of Lie algebras 1981 1 23
[4] Dilogarithms, regulators and ð-adic ð¿-functions Invent. Math. 1982 171 208
[5] , , , , One-dimensional configuration sums in vertex models and affine Lie algebra characters Lett. Math. Phys. 1989 69 77
[6] Scissors congruences. I. The Gauss-Bonnet map Math. Scand. 1981
[7] , , Dilogarithm identities in conformal field theory Modern Phys. Lett. A 1993 1835 1847
[8] , Dilogarithm identities, ð-difference equations, and the Virasoro algebra Internat. Math. Res. Notices 1993 53 60
[9] Geometry of configurations, polylogarithms, and motivic cohomology Adv. Math. 1995 197 318
[10] Explicit weight two motivic cohomology complexes and algebraic ð¾-theory ð¾-Theory 1992 387 430
[11] , , , Combinatorics of representations of ð_{ð}(Ìð°ð©(ð«)) at ð® Comm. Math. Phys. 1991 543 566
[12] , Modular invariant representations of infinite-dimensional Lie algebras and superalgebras Proc. Nat. Acad. Sci. U.S.A. 1988 4956 4960
[13] , , , , , Affine crystals and vertex models 1992 449 484
[14] , , , , , Perfect crystals of quantum affine Lie algebras Duke Math. J. 1992 499 607
[15] On crystal bases of the ð-analogue of universal enveloping algebras Duke Math. J. 1991 465 516
[16] , Exact solution of the ððð Heisenberg model of spin ð Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1985
[17] Identities for the Rogers dilogarithmic function connected with simple Lie algebras Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1987
[18] The indecomposable ð¾â of fields Ann. Sci. Ãcole Norm. Sup. (4) 1989 255 344
[19] Polylogarithms and associated functions 1981
[20] Groups related to scissors-congruence groups 1989 151 157
[21] Canonical bases arising from quantized enveloping algebras J. Amer. Math. Soc. 1990 447 498
[22] , The group ð¾â for a field Izv. Akad. Nauk SSSR Ser. Mat. 1990 522 545
[23] , , Dilogarithm identities in conformal field theory Modern Phys. Lett. A 1993 1835 1847
[24] , Third homology of ðð¿(2,ð ) made discrete J. Pure Appl. Algebra 1983 181 209
[25] Regulators, algebraic cycles, and values of ð¿-functions 1989 183 310
[26] , Some formulas related to dilogarithms, the zeta function and the Andrews-Gordon identities J. Austral. Math. Soc. Ser. A 1981 362 373
[27] Homology of classical Lie groups made discrete. III J. Pure Appl. Algebra 1989 269 312
[28] Mennicke-type symbols for relative ð¾â 1984 451 464
[29] Polylogarithms, Dedekind zeta functions and the algebraic ð¾-theory of fields 1991 391 430
Cité par Sources :
