A characterization of Banach spaces containing 𝑐₀
Journal of the American Mathematical Society, Tome 07 (1994) no. 3, pp. 707-748

Voir la notice de l'article provenant de la source American Mathematical Society

A subsequence principle is obtained, characterizing Banach spaces containing ${c_0}$, in the spirit of the author’s 1974 characterization of Banach spaces containing ${\ell ^1}$. Definition. A sequence $({b_j})$ in a Banach space is called strongly summing (s.s.) if $({b_j})$ is a weak-Cauchy basic sequence so that whenever scalars $({c_j})$ satisfy ${\text {su}}{{\text {p}}_n}\parallel \Sigma _{j = 1}^n{c_j}{b_j}\parallel \infty$, then $\Sigma {c_j}$ converges. A simple permanence property: if $({b_j})$ is an (s.s.) basis for a Banach space $B$ and $(b_j^ * )$ are its biorthogonal functionals in ${B^ * }$, then $(\Sigma _{j = 1}^nb_j^ * )_{n = 1}^\infty$ is a non-trivial weak-Cauchy sequence in ${B^ * }$; hence ${B^ * }$ fails to be weakly sequentially complete. (A weak-Cauchy sequence is called non-trivial if it is non-weakly convergent.) Theorem. Every non-trivial weak-Cauchy sequence in a (real or complex) Banach space has either an (s.s.) subsequence or a convex block basis equivalent to the summing basis. Remark. The two alternatives of the theorem are easily seen to be mutually exclusive. Corollary 1. A Banach space $B$ contains no isomorph of ${c_0}$ if and only if every non-trivial weak-Cauchy sequence in $B$ has an (s.s.) subsequence. Combining the ${c_0}$- and ${\ell ^1}$-Theorems, we obtain Corollary 2. If $B$ is a non-reflexive Banach space such that ${X^ * }$ is weakly sequentially complete for all linear subspaces $X$ of $B$, then ${c_0}$ embeds in $B$; in fact, $B$ has property $(u)$. The proof of the theorem involves a careful study of differences of bounded semi-continuous functions. The results of this study may be of independent interest.
@article{10_1090_S0894_0347_1994_1242455_4,
     author = {Rosenthal, Haskell},
     title = {A characterization of {Banach} spaces containing {\dh}‘\^a‚€},
     journal = {Journal of the American Mathematical Society},
     pages = {707--748},
     publisher = {mathdoc},
     volume = {07},
     number = {3},
     year = {1994},
     doi = {10.1090/S0894-0347-1994-1242455-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1242455-4/}
}
TY  - JOUR
AU  - Rosenthal, Haskell
TI  - A characterization of Banach spaces containing 𝑐₀
JO  - Journal of the American Mathematical Society
PY  - 1994
SP  - 707
EP  - 748
VL  - 07
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1242455-4/
DO  - 10.1090/S0894-0347-1994-1242455-4
ID  - 10_1090_S0894_0347_1994_1242455_4
ER  - 
%0 Journal Article
%A Rosenthal, Haskell
%T A characterization of Banach spaces containing 𝑐₀
%J Journal of the American Mathematical Society
%D 1994
%P 707-748
%V 07
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1242455-4/
%R 10.1090/S0894-0347-1994-1242455-4
%F 10_1090_S0894_0347_1994_1242455_4
Rosenthal, Haskell. A characterization of Banach spaces containing 𝑐₀. Journal of the American Mathematical Society, Tome 07 (1994) no. 3, pp. 707-748. doi: 10.1090/S0894-0347-1994-1242455-4

[1] Bellenot, Steven F. More quasireflexive subspaces Proc. Amer. Math. Soc. 1987 693 696

[2] Bessaga, C., Peå‚Czyå„Ski, A. On bases and unconditional convergence of series in Banach spaces Studia Math. 1958 151 164

[3] Bourgain, J., Delbaen, F. A class of special \cal𝐿_{∞} spaces Acta Math. 1980 155 176

[4] Bourgain, J., Rosenthal, H. P. Geometrical implications of certain finite-dimensional decompositions Bull. Soc. Math. Belg. Sér. B 1980 57 82

[5] Dor, Leonard E. On sequences spanning a complex 𝑙₁ space Proc. Amer. Math. Soc. 1975 515 516

[6] Finet, Catherine Subspaces of Asplund Banach spaces with the point continuity property Israel J. Math. 1987 191 198

[7] Haydon, R., Odell, E., Rosenthal, H. On certain classes of Baire-1 functions with applications to Banach space theory 1991 1 35

[8] Johnson, W. B., Rosenthal, H. P. On 𝜔*-basic sequences and their applications to the study of Banach spaces Studia Math. 1972 77 92

[9] Kechris, A. S., Louveau, A. A classification of Baire class 1 functions Trans. Amer. Math. Soc. 1990 209 236

[10] Odell, E., Rosenthal, H. P. A double-dual characterization of separable Banach spaces containing 𝑙¹ Israel J. Math. 1975 375 384

[11] Peå‚Czyå„Ski, A. A connection between weakly unconditional convergence and weakly completeness of Banach spaces Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 1958

[12] Peå‚Czyå„Ski, A. Banach spaces on which every unconditionally converging operator is weakly compact Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 1962 641 648

[13] Rosenthal, Haskell P. A characterization of Banach spaces containing 𝑙¹ Proc. Nat. Acad. Sci. U.S.A. 1974 2411 2413

[14] Rosenthal, Haskell P. Some recent discoveries in the isomorphic theory of Banach spaces Bull. Amer. Math. Soc. 1978 803 831

[15] Rosenthal, Haskell Weak*-Polish Banach spaces J. Funct. Anal. 1988 267 316

[16] Rosenthal, H. P. Some aspects of the subspace structure of infinite-dimensional Banach spaces 1991 151 176

Cité par Sources :