Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary
Journal of the American Mathematical Society, Tome 07 (1994) no. 3, pp. 661-676

Voir la notice de l'article provenant de la source American Mathematical Society

A rigidity theorem for holomorphic mappings, in the nature of the uniqueness statement of the classical one-variable Schwarz lemma, is proved at the boundary of a strongly pseudoconvex domain. The result reduces to an interesting, and apparently new, result even in one complex dimension. The theorem has a variety of geometric and analytic interpretations.
@article{10_1090_S0894_0347_1994_1242454_2,
     author = {Burns, Daniel M. and Krantz, Steven G.},
     title = {Rigidity of holomorphic mappings and a new {Schwarz} lemma at the boundary},
     journal = {Journal of the American Mathematical Society},
     pages = {661--676},
     publisher = {mathdoc},
     volume = {07},
     number = {3},
     year = {1994},
     doi = {10.1090/S0894-0347-1994-1242454-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1242454-2/}
}
TY  - JOUR
AU  - Burns, Daniel M.
AU  - Krantz, Steven G.
TI  - Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary
JO  - Journal of the American Mathematical Society
PY  - 1994
SP  - 661
EP  - 676
VL  - 07
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1242454-2/
DO  - 10.1090/S0894-0347-1994-1242454-2
ID  - 10_1090_S0894_0347_1994_1242454_2
ER  - 
%0 Journal Article
%A Burns, Daniel M.
%A Krantz, Steven G.
%T Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary
%J Journal of the American Mathematical Society
%D 1994
%P 661-676
%V 07
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1242454-2/
%R 10.1090/S0894-0347-1994-1242454-2
%F 10_1090_S0894_0347_1994_1242454_2
Burns, Daniel M.; Krantz, Steven G. Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary. Journal of the American Mathematical Society, Tome 07 (1994) no. 3, pp. 661-676. doi: 10.1090/S0894-0347-1994-1242454-2

[1] Ahlfors, Lars V. Conformal invariants: topics in geometric function theory 1973

[2] Alexander, H. Holomorphic mappings from the ball and polydisc Math. Ann. 1974 249 256

[3] Aä­Zenberg, L. A. Multidimensional analogues of the Carleman formula with integration over boundary sets of maximal dimension 1985

[4] Barletta, Elisabetta, Bedford, Eric Existence of proper mappings from domains in 𝐶² Indiana Univ. Math. J. 1990 315 338

[5] Burns, D., Jr., Shnider, S., Wells, R. O., Jr. Deformations of strictly pseudoconvex domains Invent. Math. 1978 237 253

[6] Chern, S. S., Moser, J. K. Real hypersurfaces in complex manifolds Acta Math. 1974 219 271

[7] Fefferman, Charles The Bergman kernel and biholomorphic mappings of pseudoconvex domains Invent. Math. 1974 1 65

[8] Fornaess, John Erik Embedding strictly pseudoconvex domains in convex domains Amer. J. Math. 1976 529 569

[9] Graham, Ian Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in 𝐶ⁿ with smooth boundary Trans. Amer. Math. Soc. 1975 219 240

[10] Greene, R. E., Krantz, Steven G. Stability properties of the Bergman kernel and curvature properties of bounded domains 1981 179 198

[11] Greene, Robert E., Krantz, Steven G. Deformation of complex structures, estimates for the ∂̄ equation, and stability of the Bergman kernel Adv. in Math. 1982 1 86

[12] Huang, Xiao Jun Some applications of Bell’s theorem to weakly pseudoconvex domains Pacific J. Math. 1993 305 315

[13] Katznelson, Yitzhak An introduction to harmonic analysis 1976

[14] Kobayashi, Shoshichi Hyperbolic manifolds and holomorphic mappings 1970

[15] Krantz, Steven G. Function theory of several complex variables 1982

[16] Kohn, J. J., Rossi, Hugo On the extension of holomorphic functions from the boundary of a complex manifold Ann. of Math. (2) 1965 451 472

[17] Vitushkin, A. G., Ezhov, V. V., Kruzhilin, N. G. Extension of local mappings of pseudoconvex surfaces Dokl. Akad. Nauk SSSR 1983 271 274

[18] Lempert, Lã¡Szlã³ La métrique de Kobayashi et la représentation des domaines sur la boule Bull. Soc. Math. France 1981 427 474

[19] Lempert, L. Holomorphic retracts and intrinsic metrics in convex domains Anal. Math. 1982 257 261

[20] PinäUk, S. I. The analytic continuation of holomorphic mappings Mat. Sb. (N.S.) 1975

[21] Rudin, Walter Holomorphic maps that extend to automorphisms of a ball Proc. Amer. Math. Soc. 1981 429 432

[22] Vitushkin, A. G. Real-analytic hypersurfaces of complex manifolds Uspekhi Mat. Nauk 1985

[23] Wogen, Warren R. Composition operators acting on spaces of holomorphic functions on domains in 𝐶ⁿ 1990 361 366

[24] Wu, H. Normal families of holomorphic mappings Acta Math. 1967 193 233

[25] Yau, Shing Tung A general Schwarz lemma for Kähler manifolds Amer. J. Math. 1978 197 203

Cité par Sources :