The inverse eigenvalue problem for real symmetric Toeplitz matrices
Journal of the American Mathematical Society, Tome 07 (1994) no. 3, pp. 749-767

Voir la notice de l'article provenant de la source American Mathematical Society

We show that every set of $n$ real numbers is the set of eigenvalues of an $n \times n$ real symmetric Toeplitz matrix; the matrix has a certain additional regularity. The argument—based on the topological degree—is nonconstructive.
@article{10_1090_S0894_0347_1994_1234570_6,
     author = {Landau, H. J.},
     title = {The inverse eigenvalue problem for real symmetric {Toeplitz} matrices},
     journal = {Journal of the American Mathematical Society},
     pages = {749--767},
     publisher = {mathdoc},
     volume = {07},
     number = {3},
     year = {1994},
     doi = {10.1090/S0894-0347-1994-1234570-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1234570-6/}
}
TY  - JOUR
AU  - Landau, H. J.
TI  - The inverse eigenvalue problem for real symmetric Toeplitz matrices
JO  - Journal of the American Mathematical Society
PY  - 1994
SP  - 749
EP  - 767
VL  - 07
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1234570-6/
DO  - 10.1090/S0894-0347-1994-1234570-6
ID  - 10_1090_S0894_0347_1994_1234570_6
ER  - 
%0 Journal Article
%A Landau, H. J.
%T The inverse eigenvalue problem for real symmetric Toeplitz matrices
%J Journal of the American Mathematical Society
%D 1994
%P 749-767
%V 07
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1234570-6/
%R 10.1090/S0894-0347-1994-1234570-6
%F 10_1090_S0894_0347_1994_1234570_6
Landau, H. J. The inverse eigenvalue problem for real symmetric Toeplitz matrices. Journal of the American Mathematical Society, Tome 07 (1994) no. 3, pp. 749-767. doi: 10.1090/S0894-0347-1994-1234570-6

[1] Delsarte, P., Genin, Y. Spectral properties of finite Toeplitz matrices 1984 194 213

[2] Friedland, Shmuel Inverse eigenvalue problems for symmetric Toeplitz matrices SIAM J. Matrix Anal. Appl. 1992 1142 1153

[3] Iohvidov, I. S. Hankel and Toeplitz matrices and forms 1982

[4] Schwartz, J. T. Nonlinear functional analysis 1969

[5] Slepian, David, Landau, Henry J. A note on the eigenvalues of Hermitian matrices SIAM J. Math. Anal. 1978 291 297

[6] Trench, William F. Spectral evolution of a one-parameter extension of a real symmetric Toeplitz matrix SIAM J. Matrix Anal. Appl. 1990 601 611

[7] Trench, William F. Interlacement of the even and odd spectra of real symmetric Toeplitz matrices Linear Algebra Appl. 1993 59 68

Cité par Sources :