The inverse eigenvalue problem for real symmetric Toeplitz matrices
    
    
  
  
  
      
      
      
        
Journal of the American Mathematical Society, Tome 07 (1994) no. 3, pp. 749-767
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source American Mathematical Society
            
              We show that every set of $n$ real numbers is the set of eigenvalues of an $n \times n$ real symmetric Toeplitz matrix; the matrix has a certain additional regularity. The argumentâbased on the topological degreeâis nonconstructive.        
            
            
            
          
        
      @article{10_1090_S0894_0347_1994_1234570_6,
     author = {Landau, H. J.},
     title = {The inverse eigenvalue problem for real symmetric {Toeplitz} matrices},
     journal = {Journal of the American Mathematical Society},
     pages = {749--767},
     publisher = {mathdoc},
     volume = {07},
     number = {3},
     year = {1994},
     doi = {10.1090/S0894-0347-1994-1234570-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1234570-6/}
}
                      
                      
                    TY - JOUR AU - Landau, H. J. TI - The inverse eigenvalue problem for real symmetric Toeplitz matrices JO - Journal of the American Mathematical Society PY - 1994 SP - 749 EP - 767 VL - 07 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1234570-6/ DO - 10.1090/S0894-0347-1994-1234570-6 ID - 10_1090_S0894_0347_1994_1234570_6 ER -
%0 Journal Article %A Landau, H. J. %T The inverse eigenvalue problem for real symmetric Toeplitz matrices %J Journal of the American Mathematical Society %D 1994 %P 749-767 %V 07 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1234570-6/ %R 10.1090/S0894-0347-1994-1234570-6 %F 10_1090_S0894_0347_1994_1234570_6
Landau, H. J. The inverse eigenvalue problem for real symmetric Toeplitz matrices. Journal of the American Mathematical Society, Tome 07 (1994) no. 3, pp. 749-767. doi: 10.1090/S0894-0347-1994-1234570-6
[1] , Spectral properties of finite Toeplitz matrices 1984 194 213
[2] Inverse eigenvalue problems for symmetric Toeplitz matrices SIAM J. Matrix Anal. Appl. 1992 1142 1153
[3] Hankel and Toeplitz matrices and forms 1982
[4] Nonlinear functional analysis 1969
[5] , A note on the eigenvalues of Hermitian matrices SIAM J. Math. Anal. 1978 291 297
[6] Spectral evolution of a one-parameter extension of a real symmetric Toeplitz matrix SIAM J. Matrix Anal. Appl. 1990 601 611
[7] Interlacement of the even and odd spectra of real symmetric Toeplitz matrices Linear Algebra Appl. 1993 59 68
Cité par Sources :
