The inverse eigenvalue problem for real symmetric Toeplitz matrices
Journal of the American Mathematical Society, Tome 07 (1994) no. 3, pp. 749-767
Cet article a éte moissonné depuis la source American Mathematical Society
We show that every set of $n$ real numbers is the set of eigenvalues of an $n \times n$ real symmetric Toeplitz matrix; the matrix has a certain additional regularity. The argument—based on the topological degree—is nonconstructive.
@article{10_1090_S0894_0347_1994_1234570_6,
author = {Landau, H. J.},
title = {The inverse eigenvalue problem for real symmetric {Toeplitz} matrices},
journal = {Journal of the American Mathematical Society},
pages = {749--767},
year = {1994},
volume = {07},
number = {3},
doi = {10.1090/S0894-0347-1994-1234570-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1234570-6/}
}
TY - JOUR AU - Landau, H. J. TI - The inverse eigenvalue problem for real symmetric Toeplitz matrices JO - Journal of the American Mathematical Society PY - 1994 SP - 749 EP - 767 VL - 07 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1234570-6/ DO - 10.1090/S0894-0347-1994-1234570-6 ID - 10_1090_S0894_0347_1994_1234570_6 ER -
%0 Journal Article %A Landau, H. J. %T The inverse eigenvalue problem for real symmetric Toeplitz matrices %J Journal of the American Mathematical Society %D 1994 %P 749-767 %V 07 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1234570-6/ %R 10.1090/S0894-0347-1994-1234570-6 %F 10_1090_S0894_0347_1994_1234570_6
Landau, H. J. The inverse eigenvalue problem for real symmetric Toeplitz matrices. Journal of the American Mathematical Society, Tome 07 (1994) no. 3, pp. 749-767. doi: 10.1090/S0894-0347-1994-1234570-6
[1] , Spectral properties of finite Toeplitz matrices 1984 194 213
[2] Inverse eigenvalue problems for symmetric Toeplitz matrices SIAM J. Matrix Anal. Appl. 1992 1142 1153
[3] Hankel and Toeplitz matrices and forms 1982
[4] Nonlinear functional analysis 1969
[5] , A note on the eigenvalues of Hermitian matrices SIAM J. Math. Anal. 1978 291 297
[6] Spectral evolution of a one-parameter extension of a real symmetric Toeplitz matrix SIAM J. Matrix Anal. Appl. 1990 601 611
[7] Interlacement of the even and odd spectra of real symmetric Toeplitz matrices Linear Algebra Appl. 1993 59 68
Cité par Sources :