Asymptotic completeness of 𝑁-particle long-range scattering
Journal of the American Mathematical Society, Tome 07 (1994) no. 2, pp. 307-334

Voir la notice de l'article provenant de la source American Mathematical Society

We prove asymptotic completeness for $N$-particle long-range system with potentials vanishing as $O({\left | x \right |^{ - \mu }})$, where $\mu \geq 1 - {2^{ - N - 2}}$, at infinity.
@article{10_1090_S0894_0347_1994_1233895_8,
     author = {Sigal, I. M. and Soffer, A.},
     title = {Asymptotic completeness of {\dh}‘-particle long-range scattering},
     journal = {Journal of the American Mathematical Society},
     pages = {307--334},
     publisher = {mathdoc},
     volume = {07},
     number = {2},
     year = {1994},
     doi = {10.1090/S0894-0347-1994-1233895-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1233895-8/}
}
TY  - JOUR
AU  - Sigal, I. M.
AU  - Soffer, A.
TI  - Asymptotic completeness of 𝑁-particle long-range scattering
JO  - Journal of the American Mathematical Society
PY  - 1994
SP  - 307
EP  - 334
VL  - 07
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1233895-8/
DO  - 10.1090/S0894-0347-1994-1233895-8
ID  - 10_1090_S0894_0347_1994_1233895_8
ER  - 
%0 Journal Article
%A Sigal, I. M.
%A Soffer, A.
%T Asymptotic completeness of 𝑁-particle long-range scattering
%J Journal of the American Mathematical Society
%D 1994
%P 307-334
%V 07
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1233895-8/
%R 10.1090/S0894-0347-1994-1233895-8
%F 10_1090_S0894_0347_1994_1233895_8
Sigal, I. M.; Soffer, A. Asymptotic completeness of 𝑁-particle long-range scattering. Journal of the American Mathematical Society, Tome 07 (1994) no. 2, pp. 307-334. doi: 10.1090/S0894-0347-1994-1233895-8

[1] Cycon, H. L., Froese, R. G., Kirsch, W., Simon, B. Schrödinger operators with application to quantum mechanics and global geometry 1987

[2] Dereziå„Ski, Jan A new proof of the propagation theorem for 𝑁-body quantum systems Comm. Math. Phys. 1989 203 231

[3] Dereziå„Ski, Jan Algebraic approach to the 𝑁-body long range scattering Rev. Math. Phys. 1991 1 62

[4] Enss, Volker Asymptotic observables on scattering states Comm. Math. Phys. 1983 245 268

[5] Enss, Volker Quantum scattering theory for two- and three-body systems with potentials of short and long range 1985 39 176

[6] Enss, Volker Two- and three-body quantum scattering: completeness revisited 1989 108 120

[7] Graf, Gian Michele Asymptotic completeness for 𝑁-body short-range quantum systems: a new proof Comm. Math. Phys. 1990 73 101

[8] Mourre, É. Operateurs conjugués et propriétés de propagation Comm. Math. Phys. 1983 279 300

[9] Reed, Michael, Simon, Barry Methods of modern mathematical physics. I 1980

[10] Sigal, I. M. Mathematical questions of quantum many-body theory 1987

[11] Sigal, I. M. On long-range scattering Duke Math. J. 1990 473 496

[12] Sigal, I. M., Soffer, A. The 𝑁-particle scattering problem: asymptotic completeness for short-range systems Ann. of Math. (2) 1987 35 108

[13] Sigal, I. M., Soffer, A. Asymptotic completeness of multiparticle scattering 1987 435 472

[14] Sigal, I. M., Soffer, A. Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials Invent. Math. 1990 115 143

[15] Sigal, I. M., Soffer, A. Asymptotic completeness for 𝑁≤4 particle systems with the Coulomb-type interactions Duke Math. J. 1993 243 298

Cité par Sources :