@article{10_1090_S0894_0347_1994_1231689_0,
author = {Edelman, Alan and Kostlan, Eric and Shub, Michael},
title = {How many eigenvalues of a random matrix are real?},
journal = {Journal of the American Mathematical Society},
pages = {247--267},
year = {1994},
volume = {07},
number = {1},
doi = {10.1090/S0894-0347-1994-1231689-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1231689-0/}
}
TY - JOUR AU - Edelman, Alan AU - Kostlan, Eric AU - Shub, Michael TI - How many eigenvalues of a random matrix are real? JO - Journal of the American Mathematical Society PY - 1994 SP - 247 EP - 267 VL - 07 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1231689-0/ DO - 10.1090/S0894-0347-1994-1231689-0 ID - 10_1090_S0894_0347_1994_1231689_0 ER -
%0 Journal Article %A Edelman, Alan %A Kostlan, Eric %A Shub, Michael %T How many eigenvalues of a random matrix are real? %J Journal of the American Mathematical Society %D 1994 %P 247-267 %V 07 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1231689-0/ %R 10.1090/S0894-0347-1994-1231689-0 %F 10_1090_S0894_0347_1994_1231689_0
Edelman, Alan; Kostlan, Eric; Shub, Michael. How many eigenvalues of a random matrix are real?. Journal of the American Mathematical Society, Tome 07 (1994) no. 1, pp. 247-267. doi: 10.1090/S0894-0347-1994-1231689-0
[1] , Random polynomials 1986
[2] Eigenvalues and condition numbers of random matrices SIAM J. Matrix Anal. Appl. 1988 543 560
[3] The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type Linear Algebra Appl. 1991 55 80
[4] On the distribution of a scaled condition number Math. Comp. 1992 185 190
[5] Statistical ensembles of complex, quaternion, and real matrices J. Mathematical Phys. 1965 440 449
[6] The circular law Teor. Veroyatnost. i Primenen. 1984 669 679
[7] Theory of random determinants 1990
[8] , Matrix computations 1989
[9] , Table of integrals, series, and products 1980
[10] , Hypergeometric functions of scalar matrix argument are expressible in terms of classical hypergeometric functions SIAM J. Math. Anal. 1985 852 858
[11] A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries 1986 145 152
[12] On the average number of real roots of a random algebraic equation Bull. Amer. Math. Soc. 1943 314 320
[13] On the average number of real roots of a random algebraic equation. II Proc. London Math. Soc. (2) 1949 390 408
[14] On the spectra of Gaussian matrices Linear Algebra Appl. 1992 385 388
[15] On the distribution of roots of random polynomials 1993 419 431
[16] , Eigenvalue statistics of random real matrices Phys. Rev. Lett. 1991 941 944
[17] Random matrices 1991
[18] Aspects of multivariate statistical theory 1982
[19] Integral geometry and geometric probability 1976
[20] , Complexity of Bezout’s theorem. II. Volumes and probabilities 1993 267 285
[21] , , , Spectrum of large random asymmetric matrices Phys. Rev. Lett. 1988 1895 1898
Cité par Sources :