How many eigenvalues of a random matrix are real?
Journal of the American Mathematical Society, Tome 07 (1994) no. 1, pp. 247-267 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Let $A$ be an $n \times n$ matrix whose elements are independent random variables with standard normal distributions. As $n \to \infty$, the expected number of real eigenvalues is asymptotic to $\sqrt {2n/\pi }$. We obtain a closed form expression for the expected number of real eigenvalues for finite $n$, and a formula for the density of a real eigenvalue for finite $n$. Asymptotically, a real normalized eigenvalue $\lambda /\sqrt n$ of such a random matrix is uniformly distributed on the interval [-1, 1]. Analogous, but strikingly different, results are presented for the real generalized eigenvalues. We report on numerical experiments confirming these results and suggesting that the assumption of normality is not important for the asymptotic results.
@article{10_1090_S0894_0347_1994_1231689_0,
     author = {Edelman, Alan and Kostlan, Eric and Shub, Michael},
     title = {How many eigenvalues of a random matrix are real?},
     journal = {Journal of the American Mathematical Society},
     pages = {247--267},
     year = {1994},
     volume = {07},
     number = {1},
     doi = {10.1090/S0894-0347-1994-1231689-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1231689-0/}
}
TY  - JOUR
AU  - Edelman, Alan
AU  - Kostlan, Eric
AU  - Shub, Michael
TI  - How many eigenvalues of a random matrix are real?
JO  - Journal of the American Mathematical Society
PY  - 1994
SP  - 247
EP  - 267
VL  - 07
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1231689-0/
DO  - 10.1090/S0894-0347-1994-1231689-0
ID  - 10_1090_S0894_0347_1994_1231689_0
ER  - 
%0 Journal Article
%A Edelman, Alan
%A Kostlan, Eric
%A Shub, Michael
%T How many eigenvalues of a random matrix are real?
%J Journal of the American Mathematical Society
%D 1994
%P 247-267
%V 07
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1231689-0/
%R 10.1090/S0894-0347-1994-1231689-0
%F 10_1090_S0894_0347_1994_1231689_0
Edelman, Alan; Kostlan, Eric; Shub, Michael. How many eigenvalues of a random matrix are real?. Journal of the American Mathematical Society, Tome 07 (1994) no. 1, pp. 247-267. doi: 10.1090/S0894-0347-1994-1231689-0

[1] Bharucha-Reid, A. T., Sambandham, M. Random polynomials 1986

[2] Edelman, Alan Eigenvalues and condition numbers of random matrices SIAM J. Matrix Anal. Appl. 1988 543 560

[3] Edelman, Alan The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type Linear Algebra Appl. 1991 55 80

[4] Edelman, Alan On the distribution of a scaled condition number Math. Comp. 1992 185 190

[5] Ginibre, Jean Statistical ensembles of complex, quaternion, and real matrices J. Mathematical Phys. 1965 440 449

[6] Girko, V. L. The circular law Teor. Veroyatnost. i Primenen. 1984 669 679

[7] Girko, V. L. Theory of random determinants 1990

[8] Golub, Gene H., Van Loan, Charles F. Matrix computations 1989

[9] Gradshteyn, I. S., Ryzhik, I. M. Table of integrals, series, and products 1980

[10] Gupta, Rameshwar D., Richards, Donald St. P. Hypergeometric functions of scalar matrix argument are expressible in terms of classical hypergeometric functions SIAM J. Math. Anal. 1985 852 858

[11] Hwang, Chii-Ruey A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries 1986 145 152

[12] Kac, M. On the average number of real roots of a random algebraic equation Bull. Amer. Math. Soc. 1943 314 320

[13] Kac, M. On the average number of real roots of a random algebraic equation. II Proc. London Math. Soc. (2) 1949 390 408

[14] Kostlan, Eric On the spectra of Gaussian matrices Linear Algebra Appl. 1992 385 388

[15] Kostlan, E. On the distribution of roots of random polynomials 1993 419 431

[16] Lehmann, Nils, Sommers, Hans-Jürgen Eigenvalue statistics of random real matrices Phys. Rev. Lett. 1991 941 944

[17] Mehta, Madan Lal Random matrices 1991

[18] Muirhead, Robb J. Aspects of multivariate statistical theory 1982

[19] Santaló, Luis A. Integral geometry and geometric probability 1976

[20] Shub, M., Smale, S. Complexity of Bezout’s theorem. II. Volumes and probabilities 1993 267 285

[21] Sommers, H.-J., Crisanti, A., Sompolinsky, H., Stein, Y. Spectrum of large random asymmetric matrices Phys. Rev. Lett. 1988 1895 1898

Cité par Sources :