Matching theorems and empirical discrepancy computations using majorizing measures
Journal of the American Mathematical Society, Tome 07 (1994) no. 2, pp. 455-537

Voir la notice de l'article provenant de la source American Mathematical Society

We give explicit constructions of certain majorizing measures. These constructions allow us to give a unified proof of deep matching theorems of Ajtai, Komlòs, and Tusnàdy, of Leighton and Shor, and of Shor, as well as of more precise and more general results in a similar spirit.
@article{10_1090_S0894_0347_1994_1227476_X,
     author = {Talagrand, M.},
     title = {Matching theorems and empirical discrepancy computations using majorizing measures},
     journal = {Journal of the American Mathematical Society},
     pages = {455--537},
     publisher = {mathdoc},
     volume = {07},
     number = {2},
     year = {1994},
     doi = {10.1090/S0894-0347-1994-1227476-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1227476-X/}
}
TY  - JOUR
AU  - Talagrand, M.
TI  - Matching theorems and empirical discrepancy computations using majorizing measures
JO  - Journal of the American Mathematical Society
PY  - 1994
SP  - 455
EP  - 537
VL  - 07
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1227476-X/
DO  - 10.1090/S0894-0347-1994-1227476-X
ID  - 10_1090_S0894_0347_1994_1227476_X
ER  - 
%0 Journal Article
%A Talagrand, M.
%T Matching theorems and empirical discrepancy computations using majorizing measures
%J Journal of the American Mathematical Society
%D 1994
%P 455-537
%V 07
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1227476-X/
%R 10.1090/S0894-0347-1994-1227476-X
%F 10_1090_S0894_0347_1994_1227476_X
Talagrand, M. Matching theorems and empirical discrepancy computations using majorizing measures. Journal of the American Mathematical Society, Tome 07 (1994) no. 2, pp. 455-537. doi: 10.1090/S0894-0347-1994-1227476-X

[1] Ajtai, M., Komlã³S, J., Tusnã¡Dy, G. On optimal matchings Combinatorica 1984 259 264

[2] Berman, Simeon M. Some continuity properites of Brownian motion with the time parameter in Hilbert space Trans. Amer. Math. Soc. 1968 182 198

[3] Berman, Simeon M. Harmonic analysis of local times and sample functions of Gaussian processes Trans. Amer. Math. Soc. 1969 269 281

[4] Coffman, E. G., Jr., Shor, P. W. A simple proof of the 𝑂(√𝑛log^{3/4}𝑛) upright matching bound SIAM J. Discrete Math. 1991 48 57

[5] Dudley, R. M. The sizes of compact subsets of Hilbert space and continuity of Gaussian processes J. Functional Analysis 1967 290 330

[6] Ginã©, Evarist, Zinn, Joel Some limit theorems for empirical processes Ann. Probab. 1984 929 998

[7] Hoeffding, Wassily Probability inequalities for sums of bounded random variables J. Amer. Statist. Assoc. 1963 13 30

[8] Ledoux, Michel, Talagrand, Michel Probability in Banach spaces 1991

[9] Leighton, T., Shor, P. Tight bounds for minimax grid matching with applications to the average case analysis of algorithms Combinatorica 1989 161 187

[10] Osserman, Robert The isoperimetric inequality Bull. Amer. Math. Soc. 1978 1182 1238

[11] Papadimitriou, Christos H., Steiglitz, Kenneth Combinatorial optimization: algorithms and complexity 1982

[12] Rhee, Wansoo T., Talagrand, Michel Exact bounds for the stochastic upward matching problem Trans. Amer. Math. Soc. 1988 109 125

[13] Schã¼Tt, Carsten Entropy numbers of diagonal operators between symmetric Banach spaces J. Approx. Theory 1984 121 128

[14] Shor, P. W., Yukich, J. E. Minimax grid matching and empirical measures Ann. Probab. 1991 1338 1348

[15] Talagrand, Michel Regularity of Gaussian processes Acta Math. 1987 99 149

[16] Talagrand, Michel An isoperimetric theorem on the cube and the Kintchine-Kahane inequalities Proc. Amer. Math. Soc. 1988 905 909

[17] Talagrand, Michel Sample boundedness of stochastic processes under increment conditions Ann. Probab. 1990 1 49

Cité par Sources :