Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1994_1224594_7,
author = {Martin, D. A. and Steel, J. R.},
title = {Iteration trees},
journal = {Journal of the American Mathematical Society},
pages = {1--73},
publisher = {mathdoc},
volume = {07},
number = {1},
year = {1994},
doi = {10.1090/S0894-0347-1994-1224594-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1224594-7/}
}
TY - JOUR AU - Martin, D. A. AU - Steel, J. R. TI - Iteration trees JO - Journal of the American Mathematical Society PY - 1994 SP - 1 EP - 73 VL - 07 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1224594-7/ DO - 10.1090/S0894-0347-1994-1224594-7 ID - 10_1090_S0894_0347_1994_1224594_7 ER -
%0 Journal Article %A Martin, D. A. %A Steel, J. R. %T Iteration trees %J Journal of the American Mathematical Society %D 1994 %P 1-73 %V 07 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1224594-7/ %R 10.1090/S0894-0347-1994-1224594-7 %F 10_1090_S0894_0347_1994_1224594_7
Martin, D. A.; Steel, J. R. Iteration trees. Journal of the American Mathematical Society, Tome 07 (1994) no. 1, pp. 1-73. doi: 10.1090/S0894-0347-1994-1224594-7
[1] Generalizing the Mahlo hierarchy, with applications to the Mitchell models Ann. Pure Appl. Logic 1983 103 127
[2] Between strong and superstrong J. Symbolic Logic 1986 547 559
[3] , The core model Ann. Math. Logic 1981 43 75
[4] , The covering lemma for ð¾ Ann. Math. Logic 1982 1 30
[5] , The covering lemma for ð¾ Ann. Math. Logic 1982 1 30
[6] , , Martinâs maximum, saturated ideals, and nonregular ultrafilters. I Ann. of Math. (2) 1988 1 47
[7] Elementary embeddings of models of set-theory and certain subtheories 1974 33 101
[8] The fine structure of the constructible hierarchy Ann. Math. Logic 1972
[9] , , Introduction to ð-theory 1983 199 282
[10] Some applications of iterated ultrapowers in set theory Ann. Math. Logic 1970 179 227
[11] , A basis theorem for ââ¹ sets of reals Ann. of Math. (2) 1969 138 159
[12] , A proof of projective determinacy J. Amer. Math. Soc. 1989 71 125
[13] Sets constructible from sequences of ultrafilters J. Symbolic Logic 1974 57 66
[14] Logic Colloquium â78 1979
[15] Sets constructed from sequences of measures: revisited J. Symbolic Logic 1983 600 609
[16] The core model for sequences of measures. I Math. Proc. Cambridge Philos. Soc. 1984 229 260
[17] , Fine structure and iteration trees 1994
[18] , Large cardinals imply that every reasonably definable set of reals is Lebesgue measurable Israel J. Math. 1990 381 394
[19] The consistency of the ðºð¶ð» with the existence of a measurable cardinal 1971 391 395
[20] Measurable cardinals and ιâ well-orderings Ann. of Math. (2) 1971 414 446
[21] On the cardinality of ââ¹ sets of reals 1969 58 73
[22] Inner models with many Woodin cardinals Ann. Pure Appl. Logic 1993 185 209
[23] Supercompact cardinals, sets of reals, and weakly homogeneous trees Proc. Nat. Acad. Sci. U.S.A. 1988 6587 6591
Cité par Sources :