Iteration trees
Journal of the American Mathematical Society, Tome 07 (1994) no. 1, pp. 1-73

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1994_1224594_7,
     author = {Martin, D. A. and Steel, J. R.},
     title = {Iteration trees},
     journal = {Journal of the American Mathematical Society},
     pages = {1--73},
     publisher = {mathdoc},
     volume = {07},
     number = {1},
     year = {1994},
     doi = {10.1090/S0894-0347-1994-1224594-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1224594-7/}
}
TY  - JOUR
AU  - Martin, D. A.
AU  - Steel, J. R.
TI  - Iteration trees
JO  - Journal of the American Mathematical Society
PY  - 1994
SP  - 1
EP  - 73
VL  - 07
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1224594-7/
DO  - 10.1090/S0894-0347-1994-1224594-7
ID  - 10_1090_S0894_0347_1994_1224594_7
ER  - 
%0 Journal Article
%A Martin, D. A.
%A Steel, J. R.
%T Iteration trees
%J Journal of the American Mathematical Society
%D 1994
%P 1-73
%V 07
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1224594-7/
%R 10.1090/S0894-0347-1994-1224594-7
%F 10_1090_S0894_0347_1994_1224594_7
Martin, D. A.; Steel, J. R. Iteration trees. Journal of the American Mathematical Society, Tome 07 (1994) no. 1, pp. 1-73. doi: 10.1090/S0894-0347-1994-1224594-7

[1] Baldwin, Stewart Generalizing the Mahlo hierarchy, with applications to the Mitchell models Ann. Pure Appl. Logic 1983 103 127

[2] Baldwin, Stewart Between strong and superstrong J. Symbolic Logic 1986 547 559

[3] Dodd, A., Jensen, R. The core model Ann. Math. Logic 1981 43 75

[4] Dodd, Tony, Jensen, Ronald The covering lemma for 𝐾 Ann. Math. Logic 1982 1 30

[5] Dodd, Tony, Jensen, Ronald The covering lemma for 𝐾 Ann. Math. Logic 1982 1 30

[6] Foreman, M., Magidor, M., Shelah, S. Martin’s maximum, saturated ideals, and nonregular ultrafilters. I Ann. of Math. (2) 1988 1 47

[7] Gaifman, Haim Elementary embeddings of models of set-theory and certain subtheories 1974 33 101

[8] Jensen, R. Bjã¶Rn The fine structure of the constructible hierarchy Ann. Math. Logic 1972

[9] Kechris, Alexander S., Martin, Donald A., Solovay, Robert M. Introduction to 𝑄-theory 1983 199 282

[10] Kunen, Kenneth Some applications of iterated ultrapowers in set theory Ann. Math. Logic 1970 179 227

[11] Martin, D. A., Solovay, R. M. A basis theorem for ∑₃¹ sets of reals Ann. of Math. (2) 1969 138 159

[12] Martin, Donald A., Steel, John R. A proof of projective determinacy J. Amer. Math. Soc. 1989 71 125

[13] Mitchell, William J. Sets constructible from sequences of ultrafilters J. Symbolic Logic 1974 57 66

[14] Logic Colloquium ’78 1979

[15] Mitchell, William J. Sets constructed from sequences of measures: revisited J. Symbolic Logic 1983 600 609

[16] Mitchell, William J. The core model for sequences of measures. I Math. Proc. Cambridge Philos. Soc. 1984 229 260

[17] Mitchell, William J., Steel, John R. Fine structure and iteration trees 1994

[18] Shelah, Saharon, Woodin, Hugh Large cardinals imply that every reasonably definable set of reals is Lebesgue measurable Israel J. Math. 1990 381 394

[19] Silver, Jack The consistency of the 𝐺𝐶𝐻 with the existence of a measurable cardinal 1971 391 395

[20] Silver, Jack H. Measurable cardinals and Δ¹₃ well-orderings Ann. of Math. (2) 1971 414 446

[21] Solovay, Robert M. On the cardinality of ∑₂¹ sets of reals 1969 58 73

[22] Steel, J. R. Inner models with many Woodin cardinals Ann. Pure Appl. Logic 1993 185 209

[23] Woodin, W. Hugh Supercompact cardinals, sets of reals, and weakly homogeneous trees Proc. Nat. Acad. Sci. U.S.A. 1988 6587 6591

Cité par Sources :