Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity
Journal of the American Mathematical Society, Tome 07 (1994) no. 1, pp. 199-219

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that certain quadratic expressions involving the gradient of a weakly superharmonic function in ${\mathbb {R}^2}$ belong to a local Hardy space. As an application we provide a new proof of J.-M. Delort’s convergence theorem for solutions of the two-dimensional Euler equations with vorticities of one sign.
@article{10_1090_S0894_0347_1994_1220787_3,
     author = {Evans, L. C. and M\~A{\textonequarter}ller, S.},
     title = {Hardy spaces and the two-dimensional {Euler} equations with nonnegative vorticity},
     journal = {Journal of the American Mathematical Society},
     pages = {199--219},
     publisher = {mathdoc},
     volume = {07},
     number = {1},
     year = {1994},
     doi = {10.1090/S0894-0347-1994-1220787-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1220787-3/}
}
TY  - JOUR
AU  - Evans, L. C.
AU  - Müller, S.
TI  - Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity
JO  - Journal of the American Mathematical Society
PY  - 1994
SP  - 199
EP  - 219
VL  - 07
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1220787-3/
DO  - 10.1090/S0894-0347-1994-1220787-3
ID  - 10_1090_S0894_0347_1994_1220787_3
ER  - 
%0 Journal Article
%A Evans, L. C.
%A Müller, S.
%T Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity
%J Journal of the American Mathematical Society
%D 1994
%P 199-219
%V 07
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1220787-3/
%R 10.1090/S0894-0347-1994-1220787-3
%F 10_1090_S0894_0347_1994_1220787_3
Evans, L. C.; Müller, S. Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity. Journal of the American Mathematical Society, Tome 07 (1994) no. 1, pp. 199-219. doi: 10.1090/S0894-0347-1994-1220787-3

[1] Alinhac, S. Un phénomène de concentration évanescente pour des flots non-stationnaires incompressibles en dimension deux Comm. Math. Phys. 1990 585 596

[2] Coifman, Ronald R., Lions, Pierre-Louis, Meyer, Yves, Semmes, Stephen Compacité par compensation et espaces de Hardy C. R. Acad. Sci. Paris Sér. I Math. 1989 945 949

[3] Delort, Jean-Marc Existence de nappes de tourbillon en dimension deux J. Amer. Math. Soc. 1991 553 586

[4] Diperna, Ronald J., Majda, Andrew Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow J. Amer. Math. Soc. 1988 59 95

[5] Diperna, Ronald J., Majda, Andrew J. Oscillations and concentrations in weak solutions of the incompressible fluid equations Comm. Math. Phys. 1987 667 689

[6] Diperna, Ronald J., Majda, Andrew J. Concentrations in regularizations for 2-D incompressible flow Comm. Pure Appl. Math. 1987 301 345

[7] Evans, Lawrence C. Weak convergence methods for nonlinear partial differential equations 1990

[8] Fefferman, C., Stein, E. M. 𝐻^{𝑝} spaces of several variables Acta Math. 1972 137 193

[9] Frehse, J. Capacity methods in the theory of partial differential equations Jahresber. Deutsch. Math.-Verein. 1982 1 44

[10] Garnett, John B., Jones, Peter W. The distance in BMO to 𝐿^{∞} Ann. of Math. (2) 1978 373 393

[11] Garnett, John B., Jones, Peter W. BMO from dyadic BMO Pacific J. Math. 1982 351 371

[12] Goldberg, David A local version of real Hardy spaces Duke Math. J. 1979 27 42

[13] Jones, Peter W., Journã©, Jean-Lin On weak convergence in 𝐻¹(𝑅^{𝑑}) Proc. Amer. Math. Soc. 1994 137 138

[14] Kato, Tosio On classical solutions of the two-dimensional nonstationary Euler equation Arch. Rational Mech. Anal. 1967 188 200

[15] Krasny, Robert Computation of vortex sheet roll-up 1988 9 22

[16] Latter, Robert H. A characterization of 𝐻^{𝑝}(𝑅ⁿ) in terms of atoms Studia Math. 1978 93 101

[17] Majda, Andrew Vorticity and the mathematical theory of incompressible fluid flow Comm. Pure Appl. Math. 1986

[18] Scheffer, Vladimir An inviscid flow with compact support in space-time J. Geom. Anal. 1993 343 401

[19] Schulz, Friedmar Regularity theory for quasilinear elliptic systems and Monge-Ampère equations in two dimensions 1990

[20] Semmes, Stephen A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller Comm. Partial Differential Equations 1994 277 319

[21] Stein, Elias M. Singular integrals and differentiability properties of functions 1970

[22] Torchinsky, Alberto Real-variable methods in harmonic analysis 1986

[23] Uchiyama, Akihito The construction of certain BMO functions and the corona problem Pacific J. Math. 1982 183 204

[24] Zheng, Yu Xi Concentration-cancellation for the velocity fields in two-dimensional incompressible fluid flows Comm. Math. Phys. 1991 581 594

[25] Zheng, Yu Xi Regularity of weak solutions to a two-dimensional modified Dirac-Klein-Gordon system of equations Comm. Math. Phys. 1993 67 87

Cité par Sources :