Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1994_1220787_3,
     author = {Evans, L. C. and M\~A{\textonequarter}ller, S.},
     title = {Hardy spaces and the two-dimensional {Euler} equations with nonnegative vorticity},
     journal = {Journal of the American Mathematical Society},
     pages = {199--219},
     publisher = {mathdoc},
     volume = {07},
     number = {1},
     year = {1994},
     doi = {10.1090/S0894-0347-1994-1220787-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1220787-3/}
}
                      
                      
                    TY - JOUR AU - Evans, L. C. AU - Müller, S. TI - Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity JO - Journal of the American Mathematical Society PY - 1994 SP - 199 EP - 219 VL - 07 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1220787-3/ DO - 10.1090/S0894-0347-1994-1220787-3 ID - 10_1090_S0894_0347_1994_1220787_3 ER -
%0 Journal Article %A Evans, L. C. %A Müller, S. %T Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity %J Journal of the American Mathematical Society %D 1994 %P 199-219 %V 07 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1220787-3/ %R 10.1090/S0894-0347-1994-1220787-3 %F 10_1090_S0894_0347_1994_1220787_3
Evans, L. C.; Müller, S. Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity. Journal of the American Mathematical Society, Tome 07 (1994) no. 1, pp. 199-219. doi: 10.1090/S0894-0347-1994-1220787-3
[1] Un phénomène de concentration évanescente pour des flots non-stationnaires incompressibles en dimension deux Comm. Math. Phys. 1990 585 596
[2] , , , Compacité par compensation et espaces de Hardy C. R. Acad. Sci. Paris Sér. I Math. 1989 945 949
[3] Existence de nappes de tourbillon en dimension deux J. Amer. Math. Soc. 1991 553 586
[4] , Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow J. Amer. Math. Soc. 1988 59 95
[5] , Oscillations and concentrations in weak solutions of the incompressible fluid equations Comm. Math. Phys. 1987 667 689
[6] , Concentrations in regularizations for 2-D incompressible flow Comm. Pure Appl. Math. 1987 301 345
[7] Weak convergence methods for nonlinear partial differential equations 1990
[8] , ð»^{ð} spaces of several variables Acta Math. 1972 137 193
[9] Capacity methods in the theory of partial differential equations Jahresber. Deutsch. Math.-Verein. 1982 1 44
[10] , The distance in BMO to ð¿^{â} Ann. of Math. (2) 1978 373 393
[11] , BMO from dyadic BMO Pacific J. Math. 1982 351 371
[12] A local version of real Hardy spaces Duke Math. J. 1979 27 42
[13] , On weak convergence in ð»Â¹(ð ^{ð}) Proc. Amer. Math. Soc. 1994 137 138
[14] On classical solutions of the two-dimensional nonstationary Euler equation Arch. Rational Mech. Anal. 1967 188 200
[15] Computation of vortex sheet roll-up 1988 9 22
[16] A characterization of ð»^{ð}(ð â¿) in terms of atoms Studia Math. 1978 93 101
[17] Vorticity and the mathematical theory of incompressible fluid flow Comm. Pure Appl. Math. 1986
[18] An inviscid flow with compact support in space-time J. Geom. Anal. 1993 343 401
[19] Regularity theory for quasilinear elliptic systems and Monge-Ampère equations in two dimensions 1990
[20] A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller Comm. Partial Differential Equations 1994 277 319
[21] Singular integrals and differentiability properties of functions 1970
[22] Real-variable methods in harmonic analysis 1986
[23] The construction of certain BMO functions and the corona problem Pacific J. Math. 1982 183 204
[24] Concentration-cancellation for the velocity fields in two-dimensional incompressible fluid flows Comm. Math. Phys. 1991 581 594
[25] Regularity of weak solutions to a two-dimensional modified Dirac-Klein-Gordon system of equations Comm. Math. Phys. 1993 67 87
Cité par Sources :
