A kinetic formulation of multidimensional scalar conservation laws and related equations
Journal of the American Mathematical Society, Tome 07 (1994) no. 1, pp. 169-191

Voir la notice de l'article provenant de la source American Mathematical Society

We present a new formulation of multidimensional scalar conservation laws, which includes both the equation and the entropy criterion. This formulation is a kinetic one involving an additional variable called velocity by analogy. We also give some applications of this formulation to new compactness and regularity results for entropy solutions based upon the velocity-averaging lemmas. Finally, we show that this kinetic formulation is in fact valid and meaningful for more general classes of equations like equations involving nonlinear second-order terms.
@article{10_1090_S0894_0347_1994_1201239_3,
     author = {Lions, P.-L. and Perthame, B. and Tadmor, E.},
     title = {A kinetic formulation of multidimensional scalar conservation laws and related equations},
     journal = {Journal of the American Mathematical Society},
     pages = {169--191},
     publisher = {mathdoc},
     volume = {07},
     number = {1},
     year = {1994},
     doi = {10.1090/S0894-0347-1994-1201239-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1201239-3/}
}
TY  - JOUR
AU  - Lions, P.-L.
AU  - Perthame, B.
AU  - Tadmor, E.
TI  - A kinetic formulation of multidimensional scalar conservation laws and related equations
JO  - Journal of the American Mathematical Society
PY  - 1994
SP  - 169
EP  - 191
VL  - 07
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1201239-3/
DO  - 10.1090/S0894-0347-1994-1201239-3
ID  - 10_1090_S0894_0347_1994_1201239_3
ER  - 
%0 Journal Article
%A Lions, P.-L.
%A Perthame, B.
%A Tadmor, E.
%T A kinetic formulation of multidimensional scalar conservation laws and related equations
%J Journal of the American Mathematical Society
%D 1994
%P 169-191
%V 07
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1201239-3/
%R 10.1090/S0894-0347-1994-1201239-3
%F 10_1090_S0894_0347_1994_1201239_3
Lions, P.-L.; Perthame, B.; Tadmor, E. A kinetic formulation of multidimensional scalar conservation laws and related equations. Journal of the American Mathematical Society, Tome 07 (1994) no. 1, pp. 169-191. doi: 10.1090/S0894-0347-1994-1201239-3

[1] Bardos, Claude, Golse, Franã§Ois, Levermore, David Macroscopic limits of kinetic equations 1991 1 12

[2] Bardos, C., Golse, F., Perthame, B., Sentis, R. The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation J. Funct. Anal. 1988 434 460

[3] Bã©Nilan, Philippe, Crandall, Michael G. Regularizing effects of homogeneous evolution equations 1981 23 39

[4] Bã©Nilan, Philippe, Crandall, Michael G. The continuous dependence on 𝜑 of solutions of 𝑢_{𝑡}-Δ𝜑(𝑢) Indiana Univ. Math. J. 1981 161 177

[5] Brenier, Yann Résolution d’équations d’évolution quasilinéaires en dimension 𝑁 d’espace à l’aide d’équations linéaires en dimension 𝑁+1 J. Differential Equations 1983 375 390

[6] Brã©Zis, Haã¯M, Crandall, Michael G. Uniqueness of solutions of the initial-value problem for 𝑢_{𝑡}-Δ𝜑(𝑢) J. Math. Pures Appl. (9) 1979 153 163

[7] Cercignani, Carlo The Boltzmann equation and its applications 1988

[8] Constantin, Peter, Saut, Jean-Claude Local smoothing properties of Schrödinger equations Indiana Univ. Math. J. 1989 791 810

[9] Dafermos, C. M. Regularity and large time behaviour of solutions of a conservation law without convexity Proc. Roy. Soc. Edinburgh Sect. A 1985 201 239

[10] Diperna, Ronald J. Measure-valued solutions to conservation laws Arch. Rational Mech. Anal. 1985 223 270

[11] Diperna, R. J., Lions, P.-L. Global weak solutions of Vlasov-Maxwell systems Comm. Pure Appl. Math. 1989 729 757

[12] Gã©Rard, Patrick Moyennisation et régularité deux-microlocale Ann. Sci. École Norm. Sup. (4) 1990 89 121

[13] Giga, Yoshikazu, Miyakawa, Tetsuro A kinetic construction of global solutions of first order quasilinear equations Duke Math. J. 1983 505 515

[14] Golse, Franã§Ois, Lions, Pierre-Louis, Perthame, Benoã®T, Sentis, Rã©Mi Regularity of the moments of the solution of a transport equation J. Funct. Anal. 1988 110 125

[15] Golse, Franã§Ois, Perthame, Benoã®T, Sentis, Rã©Mi Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport C. R. Acad. Sci. Paris Sér. I Math. 1985 341 344

[16] Golse, F., Poupaud, F. Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac Asymptotic Anal. 1992 135 160

[17] Lax, P. D. Hyperbolic systems of conservation laws. II Comm. Pure Appl. Math. 1957 537 566

[18] Lions, P.-L. Regularizing effects for first-order Hamilton-Jacobi equations Applicable Anal. 1985 283 307

[19] Liu, Tai-Ping, Pierre, Michel Source-solutions and asymptotic behavior in conservation laws J. Differential Equations 1984 419 441

[20] Murat, Franã§Ois Compacité par compensation Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1978 489 507

[21] Perthame, B. Global existence to the BGK model of Boltzmann equation J. Differential Equations 1989 191 205

[22] Perthame, B. Higher moments for kinetic equations: the Vlasov-Poisson and Fokker-Planck cases Math. Methods Appl. Sci. 1990 441 452

[23] Perthame, Benoã®T, Tadmor, Eitan A kinetic equation with kinetic entropy functions for scalar conservation laws Comm. Math. Phys. 1991 501 517

[24] Smoller, Joel Shock waves and reaction-diffusion equations 1994

[25] Tartar, L. Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires 1978 228 241

[26] Tartar, L. Compensated compactness and applications to partial differential equations 1979 136 212

[27] Vega, Luis Schrödinger equations: pointwise convergence to the initial data Proc. Amer. Math. Soc. 1988 874 878

[28] Khudyaev, S. I. Analiz v klassakh razryvnykh funktsiÄ­ i uravneniya matematicheskoÄ­ fiziki 1975

[29] Lions, P.-L., Perthame, B., Tadmor, E. Kinetic formulation of the isentropic gas dynamics and 𝑝-systems Comm. Math. Phys. 1994 415 431

Cité par Sources :