Invariant differential operators on a reductive Lie algebra and Weyl group representations
Journal of the American Mathematical Society, Tome 06 (1993) no. 4, pp. 779-816

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1993_1212243_2,
     author = {Wallach, Nolan R.},
     title = {Invariant differential operators on a reductive {Lie} algebra and {Weyl} group representations},
     journal = {Journal of the American Mathematical Society},
     pages = {779--816},
     publisher = {mathdoc},
     volume = {06},
     number = {4},
     year = {1993},
     doi = {10.1090/S0894-0347-1993-1212243-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1212243-2/}
}
TY  - JOUR
AU  - Wallach, Nolan R.
TI  - Invariant differential operators on a reductive Lie algebra and Weyl group representations
JO  - Journal of the American Mathematical Society
PY  - 1993
SP  - 779
EP  - 816
VL  - 06
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1212243-2/
DO  - 10.1090/S0894-0347-1993-1212243-2
ID  - 10_1090_S0894_0347_1993_1212243_2
ER  - 
%0 Journal Article
%A Wallach, Nolan R.
%T Invariant differential operators on a reductive Lie algebra and Weyl group representations
%J Journal of the American Mathematical Society
%D 1993
%P 779-816
%V 06
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1212243-2/
%R 10.1090/S0894-0347-1993-1212243-2
%F 10_1090_S0894_0347_1993_1212243_2
Wallach, Nolan R. Invariant differential operators on a reductive Lie algebra and Weyl group representations. Journal of the American Mathematical Society, Tome 06 (1993) no. 4, pp. 779-816. doi: 10.1090/S0894-0347-1993-1212243-2

[1] Barbasch, Dan, Vogan, David A., Jr. The local structure of characters J. Functional Analysis 1980 27 55

[2] Barbasch, Dan, Vogan, David Primitive ideals and orbital integrals in complex classical groups Math. Ann. 1982 153 199

[3] Barbasch, Dan, Vogan, David Primitive ideals and orbital integrals in complex exceptional groups J. Algebra 1983 350 382

[4] Bernå¡Teä­N, I. N. Analytic continuation of generalized functions with respect to a parameter Funkcional. Anal. i Priložen. 1972 26 40

[5] Bourbaki, N. Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines 1968

[6] Borel, A., Grivel, P.-P., Kaup, B., Haefliger, A., Malgrange, B., Ehlers, F. Algebraic 𝐷-modules 1987

[7] Harish-Chandra Differential operators on a semisimple Lie algebra Amer. J. Math. 1957 87 120

[8] Harish-Chandra Invariant differential operators and distributions on a semisimple Lie algebra Amer. J. Math. 1964 534 564

[9] Harish-Chandra Invariant differential operators and distributions on a semisimple Lie algebra Amer. J. Math. 1964 534 564

[10] Hotta, R., Kashiwara, M. The invariant holonomic system on a semisimple Lie algebra Invent. Math. 1984 327 358

[11] Kostant, Bertram Lie group representations on polynomial rings Amer. J. Math. 1963 327 404

[12] Ranga Rao, R. Orbital integrals in reductive groups Ann. of Math. (2) 1972 505 510

[13] Springer, T. A. Trigonometric sums, Green functions of finite groups and representations of Weyl groups Invent. Math. 1976 173 207

[14] Varadarajan, V. S. Harmonic analysis on real reductive groups 1977

[15] Wallach, Nolan R. Real reductive groups. I 1988

[16] Weyl, Hermann The classical groups 1997

Cité par Sources :