Global generation of pluricanonical and adjoint linear series on smooth projective threefolds
Journal of the American Mathematical Society, Tome 06 (1993) no. 4, pp. 875-903

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1993_1207013_5,
     author = {Ein, Lawrence and Lazarsfeld, Robert},
     title = {Global generation of pluricanonical and adjoint linear series on smooth projective threefolds},
     journal = {Journal of the American Mathematical Society},
     pages = {875--903},
     publisher = {mathdoc},
     volume = {06},
     number = {4},
     year = {1993},
     doi = {10.1090/S0894-0347-1993-1207013-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1207013-5/}
}
TY  - JOUR
AU  - Ein, Lawrence
AU  - Lazarsfeld, Robert
TI  - Global generation of pluricanonical and adjoint linear series on smooth projective threefolds
JO  - Journal of the American Mathematical Society
PY  - 1993
SP  - 875
EP  - 903
VL  - 06
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1207013-5/
DO  - 10.1090/S0894-0347-1993-1207013-5
ID  - 10_1090_S0894_0347_1993_1207013_5
ER  - 
%0 Journal Article
%A Ein, Lawrence
%A Lazarsfeld, Robert
%T Global generation of pluricanonical and adjoint linear series on smooth projective threefolds
%J Journal of the American Mathematical Society
%D 1993
%P 875-903
%V 06
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1207013-5/
%R 10.1090/S0894-0347-1993-1207013-5
%F 10_1090_S0894_0347_1993_1207013_5
Ein, Lawrence; Lazarsfeld, Robert. Global generation of pluricanonical and adjoint linear series on smooth projective threefolds. Journal of the American Mathematical Society, Tome 06 (1993) no. 4, pp. 875-903. doi: 10.1090/S0894-0347-1993-1207013-5

[1] Barth, W., Peters, C., Van De Ven, A. Compact complex surfaces 1984

[2] Benveniste, X. Sur les variétés de dimension 3 de type général dont le diviseur canonique est numériquement positif Math. Ann. 1984 479 497

[3] Bombieri, E. Canonical models of surfaces of general type Inst. Hautes Études Sci. Publ. Math. 1973 171 219

[4] Demailly, Jean-Pierre A numerical criterion for very ample line bundles J. Differential Geom. 1993 323 374

[5] Esnault, Hã©Lã¨Ne, Viehweg, Eckart Lectures on vanishing theorems 1992

[6] Fujita, Takao On polarized manifolds whose adjoint bundles are not semipositive 1987 167 178

[7] Fujita, Takao Classification theories of polarized varieties 1990

[8] Hartshorne, Robin Generalized divisors on Gorenstein curves and a theorem of Noether J. Math. Kyoto Univ. 1986 375 386

[9] Kawamata, Yujiro On the finiteness of generators of a pluricanonical ring for a 3-fold of general type Amer. J. Math. 1984 1503 1512

[10] Kawamata, Yujiro, Matsuda, Katsumi, Matsuki, Kenji Introduction to the minimal model problem 1987 283 360

[11] Kempf, George R. Varieties with rational singularities 1986 179 182

[12] Kodaira, Kunihiko Pluricanonical systems on algebraic surfaces of general type J. Math. Soc. Japan 1968 170 192

[13] Kollã¡R, Jã¡Nos Vanishing theorems for cohomology groups 1987 233 243

[14] Benveniste, X. Sur les applications pluricanoniques des variétés de type très général en dimension 3 Amer. J. Math. 1986 433 449

[15] Oguiso, Keiji On polarized Calabi-Yau 3-folds J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1991 395 429

[16] Reider, Igor Vector bundles of rank 2 and linear systems on algebraic surfaces Ann. of Math. (2) 1988 309 316

[17] Sakai, Fumio Weil divisors on normal surfaces Duke Math. J. 1984 877 887

[18] Shiffman, Bernard, Sommese, Andrew John Vanishing theorems on complex manifolds 1985

[19] Wilson, P. M. H. Towards birational classification of algebraic varieties Bull. London Math. Soc. 1987 1 48

[20] Wilson, P. M. H. Fano fourfolds of index greater than one J. Reine Angew. Math. 1987 172 181

Cité par Sources :