@article{10_1090_S0894_0347_1993_1205446_4,
author = {Kreck, Matthias and Stolz, Stephan},
title = {Nonconnected moduli spaces of positive sectional curvature metrics},
journal = {Journal of the American Mathematical Society},
pages = {825--850},
year = {1993},
volume = {06},
number = {4},
doi = {10.1090/S0894-0347-1993-1205446-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1205446-4/}
}
TY - JOUR AU - Kreck, Matthias AU - Stolz, Stephan TI - Nonconnected moduli spaces of positive sectional curvature metrics JO - Journal of the American Mathematical Society PY - 1993 SP - 825 EP - 850 VL - 06 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1205446-4/ DO - 10.1090/S0894-0347-1993-1205446-4 ID - 10_1090_S0894_0347_1993_1205446_4 ER -
%0 Journal Article %A Kreck, Matthias %A Stolz, Stephan %T Nonconnected moduli spaces of positive sectional curvature metrics %J Journal of the American Mathematical Society %D 1993 %P 825-850 %V 06 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1205446-4/ %R 10.1090/S0894-0347-1993-1205446-4 %F 10_1090_S0894_0347_1993_1205446_4
Kreck, Matthias; Stolz, Stephan. Nonconnected moduli spaces of positive sectional curvature metrics. Journal of the American Mathematical Society, Tome 06 (1993) no. 4, pp. 825-850. doi: 10.1090/S0894-0347-1993-1205446-4
[1] , , The structure of the Spin cobordism ring Ann. of Math. (2) 1967 271 298
[2] , Spin-manifolds and group actions 1970 18 28
[3] , , Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 1975 43 69
[4] , , Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 1975 43 69
[5] , An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures Bull. Amer. Math. Soc. 1975 93 97
[6] Einstein manifolds 1987
[7] Construction of manifolds of positive scalar curvature Trans. Amer. Math. Soc. 1988 63 74
[8] , The topology of linear representations of groups and subgroups Amer. J. Math. 1982 773 778
[9] Riemannian metrics of positive scalar curvature on compact manifolds with boundary Ann. Global Anal. Geom. 1987 179 191
[10] Curvature, diameter and Betti numbers Comment. Math. Helv. 1981 179 195
[11] , The classification of simply connected manifolds of positive scalar curvature Ann. of Math. (2) 1980 423 434
[12] , Positive scalar curvature and the Dirac operator on complete Riemannian manifolds Inst. Hautes Études Sci. Publ. Math. 1983
[13] Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306
[14] Four-manifolds with positive curvature operator J. Differential Geom. 1986 153 179
[15] Neue topologische Methoden in der algebraischen Geometrie 1956
[16] Harmonic spinors Advances in Math. 1974 1 55
[17] Bordism of diffeomorphisms and related topics 1984
[18] , A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds with 𝑆𝑈(3)×𝑆𝑈(2)×𝑈(1)-symmetry Ann. of Math. (2) 1988 373 388
[19] , Some nondiffeomorphic homeomorphic homogeneous 7-manifolds with positive sectional curvature J. Differential Geom. 1991 465 486
[20] Spineurs harmoniques C. R. Acad. Sci. Paris 1963 7 9
[21] Lectures on the ℎ-cobordism theorem 1965
[22] , Characteristic classes 1974
[23] , On the structure of manifolds with positive scalar curvature Manuscripta Math. 1979 159 183
[24] Simply connected manifolds of positive scalar curvature Ann. of Math. (2) 1992 511 540
[25] , Einstein metrics with positive scalar curvature 1986 319 336
[26] Search for a realistic Kaluza-Klein theory Nuclear Phys. B 1981 412 428
Cité par Sources :