Nonconnected moduli spaces of positive sectional curvature metrics
Journal of the American Mathematical Society, Tome 06 (1993) no. 4, pp. 825-850 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

For a closed manifold $M$ let $\Re _{{\text {sec}}}^ + (M)$ (resp. $\Re _{{\text {Ric}}}^ + (M)$) be the space of Riemannian metrics on $M$ with positive sectional (resp. Ricci) curvature and let ${\text {Diff}}(M)$ be the diffeomorphism group of $M$, which acts on these spaces. We construct examples of $7$-dimensional manifolds for which the moduli space $\Re _{{\text {sec}}}^ + (M)/{\text {Diff}}(M)$ is not connected and others for which $\Re _{{\text {Ric}}}^ + (M)/{\text {Diff}}(M)$ has infinitely many connected components. The examples are obtained by analyzing a family of positive sectional curvature metrics on homogeneous spaces constructed by Aloff and Wallach, on which $SU(3)$ acts transitively, respectively a family of positive Einstein metrics constructed by Wang and Ziller on homogeneous spaces, on which $SU(3) \times SU(2) \times U(1)$ acts transitively.
@article{10_1090_S0894_0347_1993_1205446_4,
     author = {Kreck, Matthias and Stolz, Stephan},
     title = {Nonconnected moduli spaces of positive sectional curvature metrics},
     journal = {Journal of the American Mathematical Society},
     pages = {825--850},
     year = {1993},
     volume = {06},
     number = {4},
     doi = {10.1090/S0894-0347-1993-1205446-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1205446-4/}
}
TY  - JOUR
AU  - Kreck, Matthias
AU  - Stolz, Stephan
TI  - Nonconnected moduli spaces of positive sectional curvature metrics
JO  - Journal of the American Mathematical Society
PY  - 1993
SP  - 825
EP  - 850
VL  - 06
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1205446-4/
DO  - 10.1090/S0894-0347-1993-1205446-4
ID  - 10_1090_S0894_0347_1993_1205446_4
ER  - 
%0 Journal Article
%A Kreck, Matthias
%A Stolz, Stephan
%T Nonconnected moduli spaces of positive sectional curvature metrics
%J Journal of the American Mathematical Society
%D 1993
%P 825-850
%V 06
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1205446-4/
%R 10.1090/S0894-0347-1993-1205446-4
%F 10_1090_S0894_0347_1993_1205446_4
Kreck, Matthias; Stolz, Stephan. Nonconnected moduli spaces of positive sectional curvature metrics. Journal of the American Mathematical Society, Tome 06 (1993) no. 4, pp. 825-850. doi: 10.1090/S0894-0347-1993-1205446-4

[1] Anderson, D. W., Brown, E. H., Jr., Peterson, F. P. The structure of the Spin cobordism ring Ann. of Math. (2) 1967 271 298

[2] Atiyah, Michael, Hirzebruch, Friedrich Spin-manifolds and group actions 1970 18 28

[3] Atiyah, M. F., Patodi, V. K., Singer, I. M. Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 1975 43 69

[4] Atiyah, M. F., Patodi, V. K., Singer, I. M. Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 1975 43 69

[5] Aloff, Simon, Wallach, Nolan R. An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures Bull. Amer. Math. Soc. 1975 93 97

[6] Besse, Arthur L. Einstein manifolds 1987

[7] Carr, Rodney Construction of manifolds of positive scalar curvature Trans. Amer. Math. Soc. 1988 63 74

[8] Cappell, Sylvain E., Shaneson, Julius L. The topology of linear representations of groups and subgroups Amer. J. Math. 1982 773 778

[9] Gajer, Paweł Riemannian metrics of positive scalar curvature on compact manifolds with boundary Ann. Global Anal. Geom. 1987 179 191

[10] Gromov, Michael Curvature, diameter and Betti numbers Comment. Math. Helv. 1981 179 195

[11] Gromov, Mikhael, Lawson, H. Blaine, Jr. The classification of simply connected manifolds of positive scalar curvature Ann. of Math. (2) 1980 423 434

[12] Gromov, Mikhael, Lawson, H. Blaine, Jr. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds Inst. Hautes Études Sci. Publ. Math. 1983

[13] Hamilton, Richard S. Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306

[14] Hamilton, Richard S. Four-manifolds with positive curvature operator J. Differential Geom. 1986 153 179

[15] Hirzebruch, F. Neue topologische Methoden in der algebraischen Geometrie 1956

[16] Hitchin, Nigel Harmonic spinors Advances in Math. 1974 1 55

[17] Kreck, Matthias Bordism of diffeomorphisms and related topics 1984

[18] Kreck, Matthias, Stolz, Stephan A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds with 𝑆𝑈(3)×𝑆𝑈(2)×𝑈(1)-symmetry Ann. of Math. (2) 1988 373 388

[19] Kreck, Matthias, Stolz, Stephan Some nondiffeomorphic homeomorphic homogeneous 7-manifolds with positive sectional curvature J. Differential Geom. 1991 465 486

[20] Lichnerowicz, André Spineurs harmoniques C. R. Acad. Sci. Paris 1963 7 9

[21] Milnor, John Lectures on the ℎ-cobordism theorem 1965

[22] Milnor, John W., Stasheff, James D. Characteristic classes 1974

[23] Schoen, R., Yau, S. T. On the structure of manifolds with positive scalar curvature Manuscripta Math. 1979 159 183

[24] Stolz, Stephan Simply connected manifolds of positive scalar curvature Ann. of Math. (2) 1992 511 540

[25] Wang, M., Ziller, W. Einstein metrics with positive scalar curvature 1986 319 336

[26] Witten, Edward Search for a realistic Kaluza-Klein theory Nuclear Phys. B 1981 412 428

Cité par Sources :