The Fibonacci unimodal map
Journal of the American Mathematical Society, Tome 06 (1993) no. 2, pp. 425-457

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1993_1182670_0,
     author = {Lyubich, Mikhail and Milnor, John},
     title = {The {Fibonacci} unimodal map},
     journal = {Journal of the American Mathematical Society},
     pages = {425--457},
     publisher = {mathdoc},
     volume = {06},
     number = {2},
     year = {1993},
     doi = {10.1090/S0894-0347-1993-1182670-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1182670-0/}
}
TY  - JOUR
AU  - Lyubich, Mikhail
AU  - Milnor, John
TI  - The Fibonacci unimodal map
JO  - Journal of the American Mathematical Society
PY  - 1993
SP  - 425
EP  - 457
VL  - 06
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1182670-0/
DO  - 10.1090/S0894-0347-1993-1182670-0
ID  - 10_1090_S0894_0347_1993_1182670_0
ER  - 
%0 Journal Article
%A Lyubich, Mikhail
%A Milnor, John
%T The Fibonacci unimodal map
%J Journal of the American Mathematical Society
%D 1993
%P 425-457
%V 06
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1182670-0/
%R 10.1090/S0894-0347-1993-1182670-0
%F 10_1090_S0894_0347_1993_1182670_0
Lyubich, Mikhail; Milnor, John. The Fibonacci unimodal map. Journal of the American Mathematical Society, Tome 06 (1993) no. 2, pp. 425-457. doi: 10.1090/S0894-0347-1993-1182670-0

[1] Branner, Bodil, Douady, Adrien Surgery on complex polynomials 1988 11 72

[2] Blokh, A. M., Lyubich, M. Yu. Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. II. The smooth case Ergodic Theory Dynam. Systems 1989 751 758

[3] Blokh, A. M., Lyubich, M. Yu. Measurable dynamics of 𝑆-unimodal maps of the interval Ann. Sci. École Norm. Sup. (4) 1991 545 573

[4] Blokh, A. M., Lyubich, M. Yu. Measure and dimension of solenoidal attractors of one-dimensional dynamical systems Comm. Math. Phys. 1990 573 583

[5] Douady, Adrien, Hubbard, John Hamal On the dynamics of polynomial-like mappings Ann. Sci. École Norm. Sup. (4) 1985 287 343

[6] Guckenheimer, John Sensitive dependence to initial conditions for one-dimensional maps Comm. Math. Phys. 1979 133 160

[7] Guckenheimer, John Limit sets of 𝑆-unimodal maps with zero entropy Comm. Math. Phys. 1987 655 659

[8] Hofbauer, Franz, Keller, Gerhard Some remarks on recent results about 𝑆-unimodal maps Ann. Inst. H. Poincaré Phys. Théor. 1990 413 425

[9] Lyubich, M. Yu. Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. I. The case of negative Schwarzian derivative Ergodic Theory Dynam. Systems 1989 737 749

[10] Ketoja, Jukka A., Piirilã¤, Olli-Pekka Fibonacci bifurcation sequences and the Cvitanović-Feigenbaum functional equation Phys. Lett. A 1989 488 492

[11] Milnor, John On the concept of attractor Comm. Math. Phys. 1985 177 195

[12] Milnor, John, Thurston, William On iterated maps of the interval 1988 465 563

[13] De Melo, W., Van Strien, S. A structure theorem in one-dimensional dynamics Ann. of Math. (2) 1989 519 546

[14] Nowicki, Tomasz, Van Strien, Sebastian Invariant measures exist under a summability condition for unimodal maps Invent. Math. 1991 123 136

[15] Procaccia, Itamar, Thomae, Stefan, Tresser, Charles First-return maps as a unified renormalization scheme for dynamical systems Phys. Rev. A (3) 1987 1884 1900

[16] Sullivan, Dennis Bounds, quadratic differentials, and renormalization conjectures 1992 417 466

[17] Shibayama, Kenshin Fibonacci sequence of stable periodic orbits for one-parameter families of 𝐶¹-unimodal mappings 1984 124 139

[18] ŚWiä…Tek, Grzegorz Rational rotation numbers for maps of the circle Comm. Math. Phys. 1988 109 128

[19] Tsuda, Ichiro On the abnormality of period doubling bifurcations: in connection with the bifurcation structure in the Belousov-Zhabotinsky reaction system Progr. Theoret. Phys. 1981 1985 2002

[20] Veerman, J. J. P., Tangerman, F. M. Scalings in circle maps. I Comm. Math. Phys. 1990 89 107

[21] Yoccoz, Jean-Christophe Il n’y a pas de contre-exemple de Denjoy analytique C. R. Acad. Sci. Paris Sér. I Math. 1984 141 144

Cité par Sources :