Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1993_1182670_0,
author = {Lyubich, Mikhail and Milnor, John},
title = {The {Fibonacci} unimodal map},
journal = {Journal of the American Mathematical Society},
pages = {425--457},
publisher = {mathdoc},
volume = {06},
number = {2},
year = {1993},
doi = {10.1090/S0894-0347-1993-1182670-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1182670-0/}
}
TY - JOUR AU - Lyubich, Mikhail AU - Milnor, John TI - The Fibonacci unimodal map JO - Journal of the American Mathematical Society PY - 1993 SP - 425 EP - 457 VL - 06 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1182670-0/ DO - 10.1090/S0894-0347-1993-1182670-0 ID - 10_1090_S0894_0347_1993_1182670_0 ER -
%0 Journal Article %A Lyubich, Mikhail %A Milnor, John %T The Fibonacci unimodal map %J Journal of the American Mathematical Society %D 1993 %P 425-457 %V 06 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1182670-0/ %R 10.1090/S0894-0347-1993-1182670-0 %F 10_1090_S0894_0347_1993_1182670_0
Lyubich, Mikhail; Milnor, John. The Fibonacci unimodal map. Journal of the American Mathematical Society, Tome 06 (1993) no. 2, pp. 425-457. doi: 10.1090/S0894-0347-1993-1182670-0
[1] , Surgery on complex polynomials 1988 11 72
[2] , Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. II. The smooth case Ergodic Theory Dynam. Systems 1989 751 758
[3] , Measurable dynamics of ð-unimodal maps of the interval Ann. Sci. Ãcole Norm. Sup. (4) 1991 545 573
[4] , Measure and dimension of solenoidal attractors of one-dimensional dynamical systems Comm. Math. Phys. 1990 573 583
[5] , On the dynamics of polynomial-like mappings Ann. Sci. Ãcole Norm. Sup. (4) 1985 287 343
[6] Sensitive dependence to initial conditions for one-dimensional maps Comm. Math. Phys. 1979 133 160
[7] Limit sets of ð-unimodal maps with zero entropy Comm. Math. Phys. 1987 655 659
[8] , Some remarks on recent results about ð-unimodal maps Ann. Inst. H. Poincaré Phys. Théor. 1990 413 425
[9] Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. I. The case of negative Schwarzian derivative Ergodic Theory Dynam. Systems 1989 737 749
[10] , Fibonacci bifurcation sequences and the CvitanoviÄ-Feigenbaum functional equation Phys. Lett. A 1989 488 492
[11] On the concept of attractor Comm. Math. Phys. 1985 177 195
[12] , On iterated maps of the interval 1988 465 563
[13] , A structure theorem in one-dimensional dynamics Ann. of Math. (2) 1989 519 546
[14] , Invariant measures exist under a summability condition for unimodal maps Invent. Math. 1991 123 136
[15] , , First-return maps as a unified renormalization scheme for dynamical systems Phys. Rev. A (3) 1987 1884 1900
[16] Bounds, quadratic differentials, and renormalization conjectures 1992 417 466
[17] Fibonacci sequence of stable periodic orbits for one-parameter families of ð¶Â¹-unimodal mappings 1984 124 139
[18] Rational rotation numbers for maps of the circle Comm. Math. Phys. 1988 109 128
[19] On the abnormality of period doubling bifurcations: in connection with the bifurcation structure in the Belousov-Zhabotinsky reaction system Progr. Theoret. Phys. 1981 1985 2002
[20] , Scalings in circle maps. I Comm. Math. Phys. 1990 89 107
[21] Il nây a pas de contre-exemple de Denjoy analytique C. R. Acad. Sci. Paris Sér. I Math. 1984 141 144
Cité par Sources :