Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians
Journal of the American Mathematical Society, Tome 06 (1993) no. 1, pp. 223-247

Voir la notice de l'article provenant de la source American Mathematical Society

We give a mathematical account of a recent string theory calculation which predicts the number of rational curves on the generic quintic threefold. Our account involves the interpretation of Yukawa couplings in terms of variations of Hodge structure, a new $q$-expansion principle for functions on the moduli space of Calabi-Yau manifolds, and the “mirror symmetry” phenomenon recently observed by string theorists.
@article{10_1090_S0894_0347_1993_1179538_2,
     author = {Morrison, David R.},
     title = {Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians},
     journal = {Journal of the American Mathematical Society},
     pages = {223--247},
     publisher = {mathdoc},
     volume = {06},
     number = {1},
     year = {1993},
     doi = {10.1090/S0894-0347-1993-1179538-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1179538-2/}
}
TY  - JOUR
AU  - Morrison, David R.
TI  - Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians
JO  - Journal of the American Mathematical Society
PY  - 1993
SP  - 223
EP  - 247
VL  - 06
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1179538-2/
DO  - 10.1090/S0894-0347-1993-1179538-2
ID  - 10_1090_S0894_0347_1993_1179538_2
ER  - 
%0 Journal Article
%A Morrison, David R.
%T Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians
%J Journal of the American Mathematical Society
%D 1993
%P 223-247
%V 06
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1179538-2/
%R 10.1090/S0894-0347-1993-1179538-2
%F 10_1090_S0894_0347_1993_1179538_2
Morrison, David R. Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians. Journal of the American Mathematical Society, Tome 06 (1993) no. 1, pp. 223-247. doi: 10.1090/S0894-0347-1993-1179538-2

[1] Aspinwall, P. S., Lã¼Tken, C. A. Geometry of mirror manifolds Nuclear Phys. B 1991 427 461

[2] Aspinwall, P. S., Lã¼Tken, C. A. Quantum algebraic geometry of superstring compactifications Nuclear Phys. B 1991 482 510

[3] Aspinwall, P. S., Lã¼Tken, C. A., Ross, G. G. Construction and couplings of mirror manifolds Phys. Lett. B 1990 373 380

[4] Bogomolov, F. A. Hamiltonian Kählerian manifolds Dokl. Akad. Nauk SSSR 1978 1101 1104

[5] Candelas, P. Yukawa couplings between (2,1)-forms Nuclear Phys. B 1988 458 492

[6] Candelas, Philip, De La Ossa, Xenia C., Green, Paul S., Parkes, Linda A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory Nuclear Phys. B 1991 21 74

[7] Candelas, P., Lynker, M., Schimmrigk, R. Calabi-Yau manifolds in weighted 𝑃₄ Nuclear Phys. B 1990 383 402

[8] Carlson, James, Green, Mark, Griffiths, Phillip, Harris, Joe Infinitesimal variations of Hodge structure. I Compositio Math. 1983 109 205

[9] Cecotti, S. 𝑁 Comm. Math. Phys. 1990 517 536

[10] Cecotti, S. 𝑁 Internat. J. Modern Phys. A 1991 1749 1813

[11] Conway, J. H., Norton, S. P. Monstrous moonshine Bull. London Math. Soc. 1979 308 339

[12] Dijkgraaf, Robbert, Verlinde, Erik, Verlinde, Herman On moduli spaces of conformal field theories with 𝑐≥1 1988 117 137

[13] Dine, M., Seiberg, N., Wen, X.-G., Witten, E. Nonperturbative effects on the string world sheet. II Nuclear Phys. B 1987 319 363

[14] Distler, Jacques, Greene, Brian Some exact results on the superpotential from Calabi-Yau compactifications Nuclear Phys. B 1988 295 316

[15] Dixon, Lance J. Some world-sheet properties of superstring compactifications, on orbifolds and otherwise 1988 67 126

[16] Friedman, Robert, Scattone, Francesco Type 𝐼𝐼𝐼 degenerations of 𝐾3 surfaces Invent. Math. 1986 1 39

[17] Gepner, Doron Exactly solvable string compactifications on manifolds of 𝑆𝑈(𝑁) holonomy Phys. Lett. B 1987 380 388

[18] Greene, B. R., Plesser, M. R. Duality in Calabi-Yau moduli space Nuclear Phys. B 1990 15 37

[19] Greene, B. R., Vafa, C., Warner, N. P. Calabi-Yau manifolds and renormalization group flows Nuclear Phys. B 1989 371 390

[20] Topics in transcendental algebraic geometry 1984

[21] Katz, Sheldon On the finiteness of rational curves on quintic threefolds Compositio Math. 1986 151 162

[22] Kempf, G., Knudsen, Finn Faye, Mumford, D., Saint-Donat, B. Toroidal embeddings. I 1973

[23] Landman, Alan On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities Trans. Amer. Math. Soc. 1973 89 126

[24] Lerche, Wolfgang, Vafa, Cumrun, Warner, Nicholas P. Chiral rings in 𝑁 Nuclear Phys. B 1989 427 474

[25] Markushevich, D. G., Olshanetsky, M. A., Perelomov, A. M. Description of a class of superstring compactifications related to semisimple Lie algebras Comm. Math. Phys. 1987 247 274

[26] Martinec, Emil J. Algebraic geometry and effective Lagrangians Phys. Lett. B 1989 431 437

[27] Martinec, Emil J. Criticality, catastrophes, and compactifications 1990 389 433

[28] Oda, Tadao Convex bodies and algebraic geometry 1988

[29] Reid, Miles Minimal models of canonical 3-folds 1983 131 180

[30] Reid, Miles The moduli space of 3-folds with 𝐾 Math. Ann. 1987 329 334

[31] Roan, Shi-Shyr On the generalization of Kummer surfaces J. Differential Geom. 1989 523 537

[32] Roan, Shi-Shyr On Calabi-Yau orbifolds in weighted projective spaces Internat. J. Math. 1990 211 232

[33] Roan, Shi-Shyr The mirror of Calabi-Yau orbifold Internat. J. Math. 1991 439 455

[34] Schmid, Wilfried Variation of Hodge structure: the singularities of the period mapping Invent. Math. 1973 211 319

[35] Schoen, Chad On the geometry of a special determinantal hypersurface associated to the Mumford-Horrocks vector bundle J. Reine Angew. Math. 1986 85 111

[36] Strominger, Andrew, Witten, Edward New manifolds for superstring compactification Comm. Math. Phys. 1985 341 361

[37] Thompson, J. G. Some numerology between the Fischer-Griess Monster and the elliptic modular function Bull. London Math. Soc. 1979 352 353

[38] Tian, Gang Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric 1987 629 646

[39] Todorov, Andrey N. The Weil-Petersson geometry of the moduli space of 𝑆𝑈(𝑛≥3) (Calabi-Yau) manifolds. I Comm. Math. Phys. 1989 325 346

[40] Yau, Shing Tung Calabi’s conjecture and some new results in algebraic geometry Proc. Nat. Acad. Sci. U.S.A. 1977 1798 1799

Cité par Sources :