Complexity of Bézout’s theorem. I. Geometric aspects
Journal of the American Mathematical Society, Tome 06 (1993) no. 2, pp. 459-501

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1993_1175980_4,
     author = {Shub, Michael and Smale, Steve},
     title = {Complexity of {B\~A{\textcopyright}zout\^a€™s} theorem. {I.} {Geometric} aspects},
     journal = {Journal of the American Mathematical Society},
     pages = {459--501},
     publisher = {mathdoc},
     volume = {06},
     number = {2},
     year = {1993},
     doi = {10.1090/S0894-0347-1993-1175980-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1175980-4/}
}
TY  - JOUR
AU  - Shub, Michael
AU  - Smale, Steve
TI  - Complexity of Bézout’s theorem. I. Geometric aspects
JO  - Journal of the American Mathematical Society
PY  - 1993
SP  - 459
EP  - 501
VL  - 06
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1175980-4/
DO  - 10.1090/S0894-0347-1993-1175980-4
ID  - 10_1090_S0894_0347_1993_1175980_4
ER  - 
%0 Journal Article
%A Shub, Michael
%A Smale, Steve
%T Complexity of Bézout’s theorem. I. Geometric aspects
%J Journal of the American Mathematical Society
%D 1993
%P 459-501
%V 06
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1175980-4/
%R 10.1090/S0894-0347-1993-1175980-4
%F 10_1090_S0894_0347_1993_1175980_4
Shub, Michael; Smale, Steve. Complexity of Bézout’s theorem. I. Geometric aspects. Journal of the American Mathematical Society, Tome 06 (1993) no. 2, pp. 459-501. doi: 10.1090/S0894-0347-1993-1175980-4

[1] Allgower, Eugene L., Georg, Kurt Numerical continuation methods 1990

[2] Brownawell, W. Dale Bounds for the degrees in the Nullstellensatz Ann. of Math. (2) 1987 577 591

[3] Canny, John Generalised characteristic polynomials J. Symbolic Comput. 1990 241 250

[4] Demmel, James Weldon On condition numbers and the distance to the nearest ill-posed problem Numer. Math. 1987 251 289

[5] Demmel, James W. The probability that a numerical analysis problem is difficult Math. Comp. 1988 449 480

[6] Golub, Gene H., Van Loan, Charles F. Matrix computations 1989

[7] Grigor′Ev, D. Yu. Computational complexity in polynomial algebra 1987 1452 1460

[8] Heintz, Joos Definability and fast quantifier elimination in algebraically closed fields Theoret. Comput. Sci. 1983 239 277

[9] Hirsch, Morris W., Smale, Stephen On algorithms for solving 𝑓(𝑥) Comm. Pure Appl. Math. 1979 281 313

[10] Keller, Herbert B. Global homotopies and Newton methods 1978 73 94

[11] Lang, Serge Real analysis 1983

[12] Li, Tien-Yien, Sauer, Tim, Yorke, James A. Numerical solution of a class of deficient polynomial systems SIAM J. Numer. Anal. 1987 435 451

[13] Morgan, Alexander Solving polynomial systems using continuation for engineering and scientific problems 1987

[14] Mumford, David Algebraic geometry. I 1976

[15] Renegar, J. On the efficiency of Newton’s method in approximating all zeros of a system of complex polynomials Math. Oper. Res. 1987 121 148

[16] Renegar, James On the worst-case arithmetic complexity of approximating zeros of systems of polynomials SIAM J. Comput. 1989 350 370

[17] Renegar, James, Shub, Michael Unified complexity analysis for Newton LP methods Math. Programming 1992 1 16

[18] Shub, Mike, Smale, Steven Computational complexity. On the geometry of polynomials and a theory of cost. I Ann. Sci. École Norm. Sup. (4) 1985 107 142

[19] Shub, M., Smale, S. Computational complexity: on the geometry of polynomials and a theory of cost. II SIAM J. Comput. 1986 145 161

[20] Smale, Steve The fundamental theorem of algebra and complexity theory Bull. Amer. Math. Soc. (N.S.) 1981 1 36

[21] Smale, Steve On the efficiency of algorithms of analysis Bull. Amer. Math. Soc. (N.S.) 1985 87 121

[22] Smale, Steve Algorithms for solving equations 1987 172 195

[23] Stein, Elias M., Weiss, Guido Introduction to Fourier analysis on Euclidean spaces 1971

[24] Wilkinson, J. H. Rounding errors in algebraic processes 1963

[25] Wright, Alden H. Finding all solutions to a system of polynomial equations Math. Comp. 1985 125 133

[26] Zulehner, Walter A simple homotopy method for determining all isolated solutions to polynomial systems Math. Comp. 1988 167 177

Cité par Sources :