Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1993_1175980_4,
     author = {Shub, Michael and Smale, Steve},
     title = {Complexity of {B\~A{\textcopyright}zout\^as} theorem. {I.} {Geometric} aspects},
     journal = {Journal of the American Mathematical Society},
     pages = {459--501},
     publisher = {mathdoc},
     volume = {06},
     number = {2},
     year = {1993},
     doi = {10.1090/S0894-0347-1993-1175980-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1175980-4/}
}
                      
                      
                    TY - JOUR AU - Shub, Michael AU - Smale, Steve TI - Complexity of Bézoutâs theorem. I. Geometric aspects JO - Journal of the American Mathematical Society PY - 1993 SP - 459 EP - 501 VL - 06 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1175980-4/ DO - 10.1090/S0894-0347-1993-1175980-4 ID - 10_1090_S0894_0347_1993_1175980_4 ER -
%0 Journal Article %A Shub, Michael %A Smale, Steve %T Complexity of Bézoutâs theorem. I. Geometric aspects %J Journal of the American Mathematical Society %D 1993 %P 459-501 %V 06 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1175980-4/ %R 10.1090/S0894-0347-1993-1175980-4 %F 10_1090_S0894_0347_1993_1175980_4
Shub, Michael; Smale, Steve. Complexity of Bézoutâs theorem. I. Geometric aspects. Journal of the American Mathematical Society, Tome 06 (1993) no. 2, pp. 459-501. doi: 10.1090/S0894-0347-1993-1175980-4
[1] , Numerical continuation methods 1990
[2] Bounds for the degrees in the Nullstellensatz Ann. of Math. (2) 1987 577 591
[3] Generalised characteristic polynomials J. Symbolic Comput. 1990 241 250
[4] On condition numbers and the distance to the nearest ill-posed problem Numer. Math. 1987 251 289
[5] The probability that a numerical analysis problem is difficult Math. Comp. 1988 449 480
[6] , Matrix computations 1989
[7] Computational complexity in polynomial algebra 1987 1452 1460
[8] Definability and fast quantifier elimination in algebraically closed fields Theoret. Comput. Sci. 1983 239 277
[9] , On algorithms for solving ð(ð¥) Comm. Pure Appl. Math. 1979 281 313
[10] Global homotopies and Newton methods 1978 73 94
[11] Real analysis 1983
[12] , , Numerical solution of a class of deficient polynomial systems SIAM J. Numer. Anal. 1987 435 451
[13] Solving polynomial systems using continuation for engineering and scientific problems 1987
[14] Algebraic geometry. I 1976
[15] On the efficiency of Newtonâs method in approximating all zeros of a system of complex polynomials Math. Oper. Res. 1987 121 148
[16] On the worst-case arithmetic complexity of approximating zeros of systems of polynomials SIAM J. Comput. 1989 350 370
[17] , Unified complexity analysis for Newton LP methods Math. Programming 1992 1 16
[18] , Computational complexity. On the geometry of polynomials and a theory of cost. I Ann. Sci. Ãcole Norm. Sup. (4) 1985 107 142
[19] , Computational complexity: on the geometry of polynomials and a theory of cost. II SIAM J. Comput. 1986 145 161
[20] The fundamental theorem of algebra and complexity theory Bull. Amer. Math. Soc. (N.S.) 1981 1 36
[21] On the efficiency of algorithms of analysis Bull. Amer. Math. Soc. (N.S.) 1985 87 121
[22] Algorithms for solving equations 1987 172 195
[23] , Introduction to Fourier analysis on Euclidean spaces 1971
[24] Rounding errors in algebraic processes 1963
[25] Finding all solutions to a system of polynomial equations Math. Comp. 1985 125 133
[26] A simple homotopy method for determining all isolated solutions to polynomial systems Math. Comp. 1988 167 177
Cité par Sources :
