Ends of hyperbolic 3-manifolds
Journal of the American Mathematical Society, Tome 06 (1993) no. 1, pp. 1-35

Voir la notice de l'article provenant de la source American Mathematical Society

Let $N = {{\mathbf {H}}^3}/\Gamma$ be a hyperbolic $3$-manifold which is homeomorphic to the interior of a compact $3$-manifold. We prove that $N$ is geometrically tame. As a consequence, we prove that $\Gamma$’s limit set ${L_\Gamma }$ is either the entire sphere at infinity or has measure zero. We also prove that $N$’s geodesic flow is ergodic if and only if ${L_\Gamma }$ is the entire sphere at infinity.
@article{10_1090_S0894_0347_1993_1166330_8,
     author = {Canary, Richard D.},
     title = {Ends of hyperbolic 3-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {1--35},
     publisher = {mathdoc},
     volume = {06},
     number = {1},
     year = {1993},
     doi = {10.1090/S0894-0347-1993-1166330-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1166330-8/}
}
TY  - JOUR
AU  - Canary, Richard D.
TI  - Ends of hyperbolic 3-manifolds
JO  - Journal of the American Mathematical Society
PY  - 1993
SP  - 1
EP  - 35
VL  - 06
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1166330-8/
DO  - 10.1090/S0894-0347-1993-1166330-8
ID  - 10_1090_S0894_0347_1993_1166330_8
ER  - 
%0 Journal Article
%A Canary, Richard D.
%T Ends of hyperbolic 3-manifolds
%J Journal of the American Mathematical Society
%D 1993
%P 1-35
%V 06
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1166330-8/
%R 10.1090/S0894-0347-1993-1166330-8
%F 10_1090_S0894_0347_1993_1166330_8
Canary, Richard D. Ends of hyperbolic 3-manifolds. Journal of the American Mathematical Society, Tome 06 (1993) no. 1, pp. 1-35. doi: 10.1090/S0894-0347-1993-1166330-8

[1] Ahlfors, Lars V. Fundamental polyhedrons and limit point sets of Kleinian groups Proc. Nat. Acad. Sci. U.S.A. 1966 251 254

[2] Ahlfors, Lars V. Möbius transformations in several dimensions 1981

[3] Ballmann, Werner, Gromov, Mikhael, Schroeder, Viktor Manifolds of nonpositive curvature 1985

[4] Bonahon, Francis Cobordism of automorphisms of surfaces Ann. Sci. École Norm. Sup. (4) 1983 237 270

[5] Bonahon, Francis Bouts des variétés hyperboliques de dimension 3 Ann. of Math. (2) 1986 71 158

[6] Bowditch, B. H. Geometrical finiteness with variable negative curvature Duke Math. J. 1995 229 274

[7] Canary, Richard D. On the Laplacian and the geometry of hyperbolic 3-manifolds J. Differential Geom. 1992 349 367

[8] Canary, R. D., Epstein, D. B. A., Green, P. Notes on notes of Thurston 1987 3 92

[9] Casson, A. J., Gordon, C. Mca. Reducing Heegaard splittings Topology Appl. 1987 275 283

[10] Cheng, S. Y., Yau, S. T. Differential equations on Riemannian manifolds and their geometric applications Comm. Pure Appl. Math. 1975 333 354

[11] Culler, Marc, Shalen, Peter B. Paradoxical decompositions, 2-generator Kleinian groups, and volumes of hyperbolic 3-manifolds J. Amer. Math. Soc. 1992 231 288

[12] Eberlein, Patrick Geodesic flows on negatively curved manifolds. II Trans. Amer. Math. Soc. 1973 57 82

[13] Epstein, D. B. A., Marden, A. Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces 1987 113 253

[14] Feighn, Mark, Mccullough, Darryl Finiteness conditions for 3-manifolds with boundary Amer. J. Math. 1987 1155 1169

[15] Freedman, Michael, Hass, Joel, Scott, Peter Least area incompressible surfaces in 3-manifolds Invent. Math. 1983 609 642

[16] Gromov, M., Thurston, W. Pinching constants for hyperbolic manifolds Invent. Math. 1987 1 12

[17] Hempel, John The finitely generated intersection property for Kleinian groups 1985 18 24

[18] Hatcher, Allen On triangulations of surfaces Topology Appl. 1991 189 194

[19] Jaco, William Adding a 2-handle to a 3-manifold: an application to property 𝑅 Proc. Amer. Math. Soc. 1984 288 292

[20] Johannson, Klaus Homotopy equivalences of 3-manifolds with boundaries 1979

[21] Karp, Leon Subharmonic functions on real and complex manifolds Math. Z. 1982 535 554

[22] Kerckhoff, Steven P. The Nielsen realization problem Ann. of Math. (2) 1983 235 265

[23] Kerckhoff, Steven P. The measure of the limit set of the handlebody group Topology 1990 27 40

[24] Klingenberg, Wilhelm Riemannian geometry 1982

[25] Marden, Albert The geometry of finitely generated kleinian groups Ann. of Math. (2) 1974 383 462

[26] Maskit, Bernard Kleinian groups 1988

[27] Masur, Howard Measured foliations and handlebodies Ergodic Theory Dynam. Systems 1986 99 116

[28] Meeks, William H., Iii, Yau, Shing Tung The equivariant Dehn’s lemma and loop theorem Comment. Math. Helv. 1981 225 239

[29] Minsky, Yair N. Harmonic maps into hyperbolic 3-manifolds Trans. Amer. Math. Soc. 1992 607 632

[30] Morgan, John W. On Thurston’s uniformization theorem for three-dimensional manifolds 1984 37 125

[31] Nicholls, Peter J. The ergodic theory of discrete groups 1989

[32] Patterson, S. J. Lectures on measures on limit sets of Kleinian groups 1987 281 323

[33] Perry, Peter A. The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix J. Reine Angew. Math. 1989 67 91

[34] Scott, G. P. Compact submanifolds of 3-manifolds J. London Math. Soc. (2) 1973 246 250

[35] Scott, G. P., Swarup, G. A. Geometric finiteness of certain Kleinian groups Proc. Amer. Math. Soc. 1990 765 768

[36] Scott, Peter, Tucker, Thomas Some examples of exotic noncompact 3-manifolds Quart. J. Math. Oxford Ser. (2) 1989 481 499

[37] Selberg, Atle On discontinuous groups in higher-dimensional symmetric spaces 1960 147 164

[38] Simon, Jonathan Compactification of covering spaces of compact 3-manifolds Michigan Math. J. 1976

[39] Sullivan, Dennis The density at infinity of a discrete group of hyperbolic motions Inst. Hautes Études Sci. Publ. Math. 1979 171 202

[40] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry Bull. Amer. Math. Soc. (N.S.) 1982 357 381

[41] Thurston, William P. A norm for the homology of 3-manifolds Mem. Amer. Math. Soc. 1986

[42] Tucker, Thomas W. Non-compact 3-manifolds and the missing-boundary problem Topology 1974 267 273

Cité par Sources :