Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1993_1161307_0,
author = {Katz, Nicholas M.},
title = {Affine cohomological transforms, perversity, and monodromy},
journal = {Journal of the American Mathematical Society},
pages = {149--222},
publisher = {mathdoc},
volume = {06},
number = {1},
year = {1993},
doi = {10.1090/S0894-0347-1993-1161307-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1161307-0/}
}
TY - JOUR AU - Katz, Nicholas M. TI - Affine cohomological transforms, perversity, and monodromy JO - Journal of the American Mathematical Society PY - 1993 SP - 149 EP - 222 VL - 06 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1161307-0/ DO - 10.1090/S0894-0347-1993-1161307-0 ID - 10_1090_S0894_0347_1993_1161307_0 ER -
%0 Journal Article %A Katz, Nicholas M. %T Affine cohomological transforms, perversity, and monodromy %J Journal of the American Mathematical Society %D 1993 %P 149-222 %V 06 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1161307-0/ %R 10.1090/S0894-0347-1993-1161307-0 %F 10_1090_S0894_0347_1993_1161307_0
Katz, Nicholas M. Affine cohomological transforms, perversity, and monodromy. Journal of the American Mathematical Society, Tome 06 (1993) no. 1, pp. 149-222. doi: 10.1090/S0894-0347-1993-1161307-0
[1] , , Faisceaux pervers 1982 5 171
[2] Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques Astérisque 1986
[3] , Notes on congruences. I Quart. J. Math. Oxford Ser. (2) 1963 51 60
[4] La conjecture de Weil. II Inst. Hautes Ãtudes Sci. Publ. Math. 1980 137 252
[5] Generalized hypergeometric functions 1990
[6] , , Generalized Euler integrals and ð´-hypergeometric functions Adv. Math. 1990 255 271
[7] Exponential sums and differential equations 1990
[8] Monodromy of families of curves: applications of some results of Davenport-Lewis 1981 171 195
[9] On the monodromy groups attached to certain families of exponential sums Duke Math. J. 1987 41 56
[10] Perversity and exponential sums 1989 209 259
[11] , Transformation de Fourier et majoration de sommes exponentielles Inst. Hautes Ãtudes Sci. Publ. Math. 1985 361 418
[12] Semi-continuité du conducteur de Swan (dâaprès P. Deligne) 1981 173 219
[13] Determination of All Primitive Collineation Groups in More than Four Variables which Contain Homologies Amer. J. Math. 1914 1 12
Cité par Sources :