Subdivisions and local ℎ-vectors
Journal of the American Mathematical Society, Tome 05 (1992) no. 4, pp. 805-851

Voir la notice de l'article provenant de la source American Mathematical Society

In Part I a general theory of $f$-vectors of simplicial subdivisions (or triangulations) of simplicial complexes is developed, based on the concept of local $h$-vector. As an application, we prove that the $h$-vector of a Cohen-Macaulay complex increases under “quasi-geometric” subdivision, thus establishing a special case of a conjecture of Kalai and this author. Techniques include commutative algebra, homological algebra, and the intersection homology of toric varieties. In Part II we extend the work of Part I to more general situations. First a formal generalization of subdivision is given based on incidence algebras. Special cases are then developed, in particular one based on subdivisions of Eulerian posets and involving generalized $h$-vectors. Other cases deal with Kazhdan-Lusztig polynomials, Ehrhart polynomials, and a $q$-analogue of Eulerian posets. Many applications and examples are given throughout.
@article{10_1090_S0894_0347_1992_1157293_9,
     author = {Stanley, Richard P.},
     title = {Subdivisions and local \^a„Ž-vectors},
     journal = {Journal of the American Mathematical Society},
     pages = {805--851},
     publisher = {mathdoc},
     volume = {05},
     number = {4},
     year = {1992},
     doi = {10.1090/S0894-0347-1992-1157293-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1157293-9/}
}
TY  - JOUR
AU  - Stanley, Richard P.
TI  - Subdivisions and local ℎ-vectors
JO  - Journal of the American Mathematical Society
PY  - 1992
SP  - 805
EP  - 851
VL  - 05
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1157293-9/
DO  - 10.1090/S0894-0347-1992-1157293-9
ID  - 10_1090_S0894_0347_1992_1157293_9
ER  - 
%0 Journal Article
%A Stanley, Richard P.
%T Subdivisions and local ℎ-vectors
%J Journal of the American Mathematical Society
%D 1992
%P 805-851
%V 05
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1157293-9/
%R 10.1090/S0894-0347-1992-1157293-9
%F 10_1090_S0894_0347_1992_1157293_9
Stanley, Richard P. Subdivisions and local ℎ-vectors. Journal of the American Mathematical Society, Tome 05 (1992) no. 4, pp. 805-851. doi: 10.1090/S0894-0347-1992-1157293-9

[1] Bayer, Margaret M. Equidecomposable and weakly neighborly polytopes Israel J. Math. 1993 301 320

[2] Billera, L. J. Polyhedral theory and commutative algebra 1983 57 77

[3] Bjã¶Rner, A. Posets, regular CW complexes and Bruhat order European J. Combin. 1984 7 16

[4] Brenti, Francesco Unimodal polynomials arising from symmetric functions Proc. Amer. Math. Soc. 1990 1133 1141

[5] Billera, Louis J., Filliman, Paul, Sturmfels, Bernd Constructions and complexity of secondary polytopes Adv. Math. 1990 155 179

[6] Bayer, Margaret M., Klapper, Andrew A new index for polytopes Discrete Comput. Geom. 1991 33 47

[7] Betke, U., Mcmullen, P. Lattice points in lattice polytopes Monatsh. Math. 1985 253 265

[8] Comtet, Louis Advanced combinatorics 1974

[9] Danilov, V. I. The geometry of toric varieties Uspekhi Mat. Nauk 1978

[10] Daverman, Robert J. Decompositions of manifolds 1986

[11] Deodhar, Vinay V. On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells Invent. Math. 1985 499 511

[12] Gel′Fand, I. M., Kapranov, M. M., Zelevinsky, A. V. Hyperdeterminants Adv. Math. 1992 226 263

[13] Goresky, M., Macpherson, R. On the topology of complex algebraic maps 1982 119 129

[14] Gel′Fand, I. M., Zelevinskiä­, A. V., Kapranov, M. M. Discriminants of polynomials in several variables and triangulations of Newton polyhedra Algebra i Analiz 1990 1 62

[15] Haiman, Mark A simple and relatively efficient triangulation of the 𝑛-cube Discrete Comput. Geom. 1991 287 289

[16] Humphreys, James E. Reflection groups and Coxeter groups 1990

[17] Hilton, Peter John, Stammbach, Urs A course in homological algebra 1971

[18] Kalai, Gil The diameter of graphs of convex polytopes and 𝑓-vector theory 1991 387 411

[19] Klee, Victor A combinatorial analogue of Poincaré’s duality theorem Canadian J. Math. 1964 517 531

[20] Kind, Bernd, Kleinschmidt, Peter Schälbare Cohen-Macauley-Komplexe und ihre Parametrisierung Math. Z. 1979 173 179

[21] Kazhdan, David, Lusztig, George Representations of Coxeter groups and Hecke algebras Invent. Math. 1979 165 184

[22] Lee, Carl W. Regular triangulations of convex polytopes 1991 443 456

[23] Macdonald, I. G. Polynomials associated with finite cell-complexes J. London Math. Soc. (2) 1971 181 192

[24] Macdonald, I. G. Symmetric functions and Hall polynomials 1979

[25] Mcmullen, P. The maximum numbers of faces of a convex polytope Mathematika 1970 179 184

[26] Miyazaki, Mitsuhiro Characterizations of Buchsbaum complexes Manuscripta Math. 1989 245 254

[27] Munkres, James R. Elements of algebraic topology 1984

[28] Schenzel, Peter On the number of faces of simplicial complexes and the purity of Frobenius Math. Z. 1981 125 142

[29] Spanier, Edwin H. Algebraic topology 1966

[30] Stanley, Richard P. Combinatorial reciprocity theorems Advances in Math. 1974 194 253

[31] Stanley, Richard P. The upper bound conjecture and Cohen-Macaulay rings Studies in Appl. Math. 1975 135 142

[32] Stanley, Richard P. Hilbert functions of graded algebras Advances in Math. 1978 57 83

[33] Stanley, Richard P. Cohen-Macaulay complexes 1977 51 62

[34] Stanley, Richard P. Balanced Cohen-Macaulay complexes Trans. Amer. Math. Soc. 1979 139 157

[35] Stanley, Richard P. The number of faces of a simplicial convex polytope Adv. in Math. 1980 236 238

[36] Stanley, Richard P. Some aspects of groups acting on finite posets J. Combin. Theory Ser. A 1982 132 161

[37] Stanley, Richard P. Combinatorics and commutative algebra 1983

[38] Stanley, Richard P. The number of faces of simplicial polytopes and spheres 1985 212 223

[39] Stanley, Richard Generalized 𝐻-vectors, intersection cohomology of toric varieties, and related results 1987 187 213

[40] Stembridge, John R. Eulerian numbers, tableaux, and the Betti numbers of a toric variety Discrete Math. 1992 307 320

[41] Stã¼Ckrad, Jã¼Rgen, Vogel, Wolfgang Buchsbaum rings and applications 1986 286

Cité par Sources :