Convolution singular integrals on Lipschitz surfaces
Journal of the American Mathematical Society, Tome 05 (1992) no. 3, pp. 455-481

Voir la notice de l'article provenant de la source American Mathematical Society

We prove the ${L_p}$-boundedness of convolution singular integral operators on a Lipschitz surface \[ \Sigma = \{ g({\mathbf {x}}){e_0} + {\mathbf {x}} \in {\mathbb {R}^{n + 1}}:{\mathbf {x}} \in {\mathbb {R}^n}\} \] where $g$ is a Lipschitz function which satisfies ${\left \| {\nabla g} \right \|_\infty } \leq {\text {tan}}\omega \infty$. Here we have embedded ${\mathbb {R}^{n + 1}}$ in the Clifford algebra ${\mathbb {R}_{(n)}}$ with identity ${e_0}$, and are considering convolution with right-monogenic functions $\phi$ which satisfy $\left | {\phi (x)} \right | \leq C{\left | x \right |^{ - n}}$ on a sector \[ S_\mu ^o = \{ x = {x_0} + {\mathbf {x}} \in {\mathbb {R}^{n + 1}}:\left | {{x_0}} \right | \left | {\mathbf {x}} \right |{\text {tan}} \mu \} \] where $\mu > \omega$. Provided there exists an ${L_\infty }$ function $\underline \phi$ satisfying \[ \underline \phi (R) - \underline \phi (r) = \int _{\substack {r |x| R\\x \in {\mathbb {R}^{n}}}} \phi (x)\;dx \], then the related convolution singular integral operator \[ ({T_{(\phi ,\underline {\phi )} }}u)(x) = \lim _{\varepsilon \to 0+}\left \{\int _{\substack {y \in \Sigma \\|x - y| \geq \varepsilon }} \phi (x - y)n(y)u(y)\;d{S_y} + \underline \phi (\varepsilon n(x))u(x) \right \} \] is bounded on ${L_p}(\Sigma )$ for $1 p \infty$.
@article{10_1090_S0894_0347_1992_1157291_5,
     author = {Li, Chun and McIntosh, Alan and Semmes, Stephen},
     title = {Convolution singular integrals on {Lipschitz} surfaces},
     journal = {Journal of the American Mathematical Society},
     pages = {455--481},
     publisher = {mathdoc},
     volume = {05},
     number = {3},
     year = {1992},
     doi = {10.1090/S0894-0347-1992-1157291-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1157291-5/}
}
TY  - JOUR
AU  - Li, Chun
AU  - McIntosh, Alan
AU  - Semmes, Stephen
TI  - Convolution singular integrals on Lipschitz surfaces
JO  - Journal of the American Mathematical Society
PY  - 1992
SP  - 455
EP  - 481
VL  - 05
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1157291-5/
DO  - 10.1090/S0894-0347-1992-1157291-5
ID  - 10_1090_S0894_0347_1992_1157291_5
ER  - 
%0 Journal Article
%A Li, Chun
%A McIntosh, Alan
%A Semmes, Stephen
%T Convolution singular integrals on Lipschitz surfaces
%J Journal of the American Mathematical Society
%D 1992
%P 455-481
%V 05
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1157291-5/
%R 10.1090/S0894-0347-1992-1157291-5
%F 10_1090_S0894_0347_1992_1157291_5
Li, Chun; McIntosh, Alan; Semmes, Stephen. Convolution singular integrals on Lipschitz surfaces. Journal of the American Mathematical Society, Tome 05 (1992) no. 3, pp. 455-481. doi: 10.1090/S0894-0347-1992-1157291-5

[1] Brackx, F., Delanghe, Richard, Sommen, F. Clifford analysis 1982

[2] Calderã³N, A.-P. Cauchy integrals on Lipschitz curves and related operators Proc. Nat. Acad. Sci. U.S.A. 1977 1324 1327

[3] Coifman, R. R., Mcintosh, A., Meyer, Y. L’intégrale de Cauchy définit un opérateur borné sur 𝐿² pour les courbes lipschitziennes Ann. of Math. (2) 1982 361 387

[4] Coifman, R. R., Meyer, Y. Fourier analysis of multilinear convolutions, Calderón’s theorem, and analysis of Lipschitz curves 1980 104 122

[5] Coifman, R. R., Jones, Peter W., Semmes, Stephen Two elementary proofs of the 𝐿² boundedness of Cauchy integrals on Lipschitz curves J. Amer. Math. Soc. 1989 553 564

[6] Dahlberg, Bjã¶Rn E. J. Poisson semigroups and singular integrals Proc. Amer. Math. Soc. 1986 41 48

[7] David, G., Journã©, J.-L., Semmes, S. Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation Rev. Mat. Iberoamericana 1985 1 56

[8] Gilbert, John E., Murray, Margaret A. M. 𝐻^{𝑝}-theory on Euclidean space and the Dirac operator Rev. Mat. Iberoamericana 1988 253 289

[9] Iftimie, V. Fonctions hypercomplexes Bull. Math. Soc. Sci. Math. R. S. Roumanie 1965

[10] Kenig, Carlos E. Weighted 𝐻^{𝑝} spaces on Lipschitz domains Amer. J. Math. 1980 129 163

[11] Mcintosh, Alan Clifford algebras and the higher-dimensional Cauchy integral 1989 253 267

[12] Mcintosh, Alan, Qian, Tao Fourier theory on Lipschitz curves 1987 157 166

[13] Mcintosh, Alan, Qian, Tao Convolution singular integral operators on Lipschitz curves 1991 142 162

[14] Meyer, Yves Ondelettes et opérateurs. II 1990

[15] Murray, Margaret A. M. The Cauchy integral, Calderón commutators, and conjugations of singular integrals in 𝑅ⁿ Trans. Amer. Math. Soc. 1985 497 518

Cité par Sources :