A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing
Journal of the American Mathematical Society, Tome 05 (1992) no. 4, pp. 763-804

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1992_1151542_9,
     author = {Vojta, Paul},
     title = {A generalization of theorems of {Faltings} and {Thue-Siegel-Roth-Wirsing}},
     journal = {Journal of the American Mathematical Society},
     pages = {763--804},
     publisher = {mathdoc},
     volume = {05},
     number = {4},
     year = {1992},
     doi = {10.1090/S0894-0347-1992-1151542-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1151542-9/}
}
TY  - JOUR
AU  - Vojta, Paul
TI  - A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing
JO  - Journal of the American Mathematical Society
PY  - 1992
SP  - 763
EP  - 804
VL  - 05
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1151542-9/
DO  - 10.1090/S0894-0347-1992-1151542-9
ID  - 10_1090_S0894_0347_1992_1151542_9
ER  - 
%0 Journal Article
%A Vojta, Paul
%T A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing
%J Journal of the American Mathematical Society
%D 1992
%P 763-804
%V 05
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1151542-9/
%R 10.1090/S0894-0347-1992-1151542-9
%F 10_1090_S0894_0347_1992_1151542_9
Vojta, Paul. A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing. Journal of the American Mathematical Society, Tome 05 (1992) no. 4, pp. 763-804. doi: 10.1090/S0894-0347-1992-1151542-9

[1] Bombieri, Enrico The Mordell conjecture revisited Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1990 615 640

[2] Bombieri, E., Vaaler, J. On Siegel’s lemma Invent. Math. 1983 11 32

[3] Faltings, G. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern Invent. Math. 1983 349 366

[4] Faltings, Gerd Diophantine approximation on abelian varieties Ann. of Math. (2) 1991 549 576

[5] Lang, Serge Fundamentals of Diophantine geometry 1983

[6] Lang, Serge Introduction to Arakelov theory 1988

[7] Mumford, David A remark on Mordell’s conjecture Amer. J. Math. 1965 1007 1016

[8] Roth, K. F. Rational approximations to algebraic numbers Mathematika 1955

[9] Silverman, Joseph H. Rational points on symmetric products of a curve Amer. J. Math. 1991 471 508

[10] Vojta, Paul Diophantine approximations and value distribution theory 1987

[11] Vojta, Paul On algebraic points on curves Compositio Math. 1991 29 36

[12] Vojta, Paul Mordell’s conjecture over function fields Invent. Math. 1989 115 138

[13] Vojta, Paul Siegel’s theorem in the compact case Ann. of Math. (2) 1991 509 548

[14] Vojta, Paul Arithmetic discriminants and quadratic points on curves 1991 359 376

[15] Vojta, Paul Applications of arithmetic algebraic geometry to Diophantine approximations 1993 164 208

[16] Wirsing, Eduard A. On approximations of algebraic numbers by algebraic numbers of bounded degree 1971 213 247

Cité par Sources :