Twistors, Kähler manifolds, and bimeromorphic geometry. II
Journal of the American Mathematical Society, Tome 05 (1992) no. 2, pp. 317-325

Voir la notice de l'article provenant de la source American Mathematical Society

Using examples [13] of compact complex $3$-manifolds that arise as twistor spaces, we show that the class of compact complex manifolds bimeromorphic to Kähler manifolds is not stable under small deformations of complex structure.
@article{10_1090_S0894_0347_1992_1137099_7,
     author = {LeBrun, Claude and Poon, Yat Sun},
     title = {Twistors, {K\~A{\textcurrency}hler} manifolds, and bimeromorphic geometry. {II}},
     journal = {Journal of the American Mathematical Society},
     pages = {317--325},
     publisher = {mathdoc},
     volume = {05},
     number = {2},
     year = {1992},
     doi = {10.1090/S0894-0347-1992-1137099-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1137099-7/}
}
TY  - JOUR
AU  - LeBrun, Claude
AU  - Poon, Yat Sun
TI  - Twistors, Kähler manifolds, and bimeromorphic geometry. II
JO  - Journal of the American Mathematical Society
PY  - 1992
SP  - 317
EP  - 325
VL  - 05
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1137099-7/
DO  - 10.1090/S0894-0347-1992-1137099-7
ID  - 10_1090_S0894_0347_1992_1137099_7
ER  - 
%0 Journal Article
%A LeBrun, Claude
%A Poon, Yat Sun
%T Twistors, Kähler manifolds, and bimeromorphic geometry. II
%J Journal of the American Mathematical Society
%D 1992
%P 317-325
%V 05
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1137099-7/
%R 10.1090/S0894-0347-1992-1137099-7
%F 10_1090_S0894_0347_1992_1137099_7
LeBrun, Claude; Poon, Yat Sun. Twistors, Kähler manifolds, and bimeromorphic geometry. II. Journal of the American Mathematical Society, Tome 05 (1992) no. 2, pp. 317-325. doi: 10.1090/S0894-0347-1992-1137099-7

[1] Atiyah, M. F., Hitchin, N. J., Singer, I. M. Self-duality in four-dimensional Riemannian geometry Proc. Roy. Soc. London Ser. A 1978 425 461

[2] Campana, F. On twistor spaces of the class 𝒞 J. Differential Geom. 1991 541 549

[3] Donaldson, S., Friedman, R. Connected sums of self-dual manifolds and deformations of singular spaces Nonlinearity 1989 197 239

[4] Floer, Andreas Self-dual conformal structures on 𝑙𝐶𝑃² J. Differential Geom. 1991 551 573

[5] Fujiki, Akira On automorphism groups of compact Kähler manifolds Invent. Math. 1978 225 258

[6] Grauert, Hans, Remmert, Reinhold Coherent analytic sheaves 1984

[7] Hitchin, N. J. Kählerian twistor spaces Proc. London Math. Soc. (3) 1981 133 150

[8] Kodaira, K. A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds Ann. of Math. (2) 1962 146 162

[9] Kodaira, K., Spencer, D. C. On deformations of complex analytic structures. I, II Ann. of Math. (2) 1958 328 466

[10] Lebrun, Claude Explicit self-dual metrics on 𝐶𝑃₂#⋯#𝐶𝑃₂ J. Differential Geom. 1991 223 253

[11] Lebrun, Claude Twistors, Kähler manifolds, and bimeromorphic geometry. I J. Amer. Math. Soc. 1992 289 316

[12] Morrow, James, Kodaira, Kunihiko Complex manifolds 1971

[13] Penrose, Roger Nonlinear gravitons and curved twistor theory Gen. Relativity Gravitation 1976 31 52

[14] Poon, Y. Sun Algebraic dimension of twistor spaces Math. Ann. 1988 621 627

[15] Poon, Y. Sun On the algebraic structure of twistor spaces J. Differential Geom. 1992 451 491

[16] Open problems 1983 591 630

[17] Ward, R. S. On self-dual gauge fields Phys. Lett. A 1977 81 82

Cité par Sources :