Twistors, Kähler manifolds, and bimeromorphic geometry. I
Journal of the American Mathematical Society, Tome 05 (1992) no. 2, pp. 289-316

Voir la notice de l'article provenant de la source American Mathematical Society

By considering deformations of the Moishezon twistor spaces of $\mathbb {C}{\mathbb {P}_2}\# \cdot \cdot \cdot \# \mathbb {C}{\mathbb {P}_2}$ constructed in [20], we show that the blow up of ${\mathbb {C}^2}$ at $n$ points in general position admits an asymptotically flat scalar-flat Kähler metric in each Kähler class, at least provided that the given points are nearly collinear.
@article{10_1090_S0894_0347_1992_1137098_5,
     author = {LeBrun, Claude},
     title = {Twistors, {K\~A{\textcurrency}hler} manifolds, and bimeromorphic geometry. {I}},
     journal = {Journal of the American Mathematical Society},
     pages = {289--316},
     publisher = {mathdoc},
     volume = {05},
     number = {2},
     year = {1992},
     doi = {10.1090/S0894-0347-1992-1137098-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1137098-5/}
}
TY  - JOUR
AU  - LeBrun, Claude
TI  - Twistors, Kähler manifolds, and bimeromorphic geometry. I
JO  - Journal of the American Mathematical Society
PY  - 1992
SP  - 289
EP  - 316
VL  - 05
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1137098-5/
DO  - 10.1090/S0894-0347-1992-1137098-5
ID  - 10_1090_S0894_0347_1992_1137098_5
ER  - 
%0 Journal Article
%A LeBrun, Claude
%T Twistors, Kähler manifolds, and bimeromorphic geometry. I
%J Journal of the American Mathematical Society
%D 1992
%P 289-316
%V 05
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1137098-5/
%R 10.1090/S0894-0347-1992-1137098-5
%F 10_1090_S0894_0347_1992_1137098_5
LeBrun, Claude. Twistors, Kähler manifolds, and bimeromorphic geometry. I. Journal of the American Mathematical Society, Tome 05 (1992) no. 2, pp. 289-316. doi: 10.1090/S0894-0347-1992-1137098-5

[1] Atiyah, M. F. Green’s functions for self-dual four-manifolds 1981 129 158

[2] Atiyah, M. F., Hitchin, N. J., Singer, I. M. Self-duality in four-dimensional Riemannian geometry Proc. Roy. Soc. London Ser. A 1978 425 461

[3] Baston, Robert J., Eastwood, Michael G. The Penrose transform 1989

[4] Calabi, Eugenio Extremal Kähler metrics 1982 259 290

[5] Donaldson, S., Friedman, R. Connected sums of self-dual manifolds and deformations of singular spaces Nonlinearity 1989 197 239

[6] Flaherty, Edward J., Jr. The nonlinear graviton in interaction with a photon Gen. Relativity Gravitation 1978 961 978

[7] Floer, Andreas Self-dual conformal structures on 𝑙𝐶𝑃² J. Differential Geom. 1991 551 573

[8] Fujiki, Akira On a compact complex manifold in \cal𝐶 without holomorphic 2-forms Publ. Res. Inst. Math. Sci. 1983 193 202

[9] Grauert, Hans, Remmert, Reinhold Coherent analytic sheaves 1984

[10] Hitchin, N. J. Polygons and gravitons Math. Proc. Cambridge Philos. Soc. 1979 465 476

[11] Hitchin, N. J. Linear field equations on self-dual spaces Proc. Roy. Soc. London Ser. A 1980 173 191

[12] Hitchin, N. J. Kählerian twistor spaces Proc. London Math. Soc. (3) 1981 133 150

[13] Jones, P. E., Tod, K. P. Minitwistor spaces and Einstein-Weyl spaces Classical Quantum Gravity 1985 565 577

[14] Kodaira, K. A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds Ann. of Math. (2) 1962 146 162

[15] Kodaira, K., Nirenberg, L., Spencer, D. C. On the existence of deformations of complex analytic structures Ann. of Math. (2) 1958 450 459

[16] Kodaira, K., Spencer, D. C. On deformations of complex analytic structures. I, II Ann. of Math. (2) 1958 328 466

[17] Lebrun, Claude Poon’s self-dual metrics and Kähler geometry J. Differential Geom. 1988 341 343

[18] Lebrun, Claude Explicit self-dual metrics on 𝐶𝑃₂#⋯#𝐶𝑃₂ J. Differential Geom. 1991 223 253

[19] Lebrun, Claude Scalar-flat Kähler metrics on blown-up ruled surfaces J. Reine Angew. Math. 1991 161 177

[20] Lebrun, Claude, Poon, Yat Sun Twistors, Kähler manifolds, and bimeromorphic geometry. II J. Amer. Math. Soc. 1992 317 325

[21] Pontecorvo, Massimiliano On twistor spaces of anti-self-dual Hermitian surfaces Trans. Amer. Math. Soc. 1992 653 661

[22] Poon, Y. Sun Compact self-dual manifolds with positive scalar curvature J. Differential Geom. 1986 97 132

[23] Ward, R. S. On self-dual gauge fields Phys. Lett. A 1977 81 82

[24] Yau, Shing Tung Problem section 1982 669 706

Cité par Sources :