Williams’s conjecture is false for reducible subshifts
Journal of the American Mathematical Society, Tome 05 (1992) no. 1, pp. 213-215

Voir la notice de l'article provenant de la source American Mathematical Society

We show that for two subshifts of finite type having exactly two irreducible components, strong shift equivalence is not the same as shift equivalence. This refutes the Williams conjecture $[{\text {W}}]$ in the reducible case. The irreducible case remains an open problem.
@article{10_1090_S0894_0347_1992_1130528_4,
     author = {Kim, K. H. and Roush, F. W.},
     title = {Williams\^a€™s conjecture is false for reducible subshifts},
     journal = {Journal of the American Mathematical Society},
     pages = {213--215},
     publisher = {mathdoc},
     volume = {05},
     number = {1},
     year = {1992},
     doi = {10.1090/S0894-0347-1992-1130528-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1130528-4/}
}
TY  - JOUR
AU  - Kim, K. H.
AU  - Roush, F. W.
TI  - Williams’s conjecture is false for reducible subshifts
JO  - Journal of the American Mathematical Society
PY  - 1992
SP  - 213
EP  - 215
VL  - 05
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1130528-4/
DO  - 10.1090/S0894-0347-1992-1130528-4
ID  - 10_1090_S0894_0347_1992_1130528_4
ER  - 
%0 Journal Article
%A Kim, K. H.
%A Roush, F. W.
%T Williams’s conjecture is false for reducible subshifts
%J Journal of the American Mathematical Society
%D 1992
%P 213-215
%V 05
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1130528-4/
%R 10.1090/S0894-0347-1992-1130528-4
%F 10_1090_S0894_0347_1992_1130528_4
Kim, K. H.; Roush, F. W. Williams’s conjecture is false for reducible subshifts. Journal of the American Mathematical Society, Tome 05 (1992) no. 1, pp. 213-215. doi: 10.1090/S0894-0347-1992-1130528-4

[1] Adler, Roy L., Coppersmith, Don, Hassner, Martin Algorithms for sliding block codes. An application of symbolic dynamics to information theory IEEE Trans. Inform. Theory 1983 5 22

[2] Baker, Kirby A. Strong shift equivalence of 2×2 matrices of nonnegative integers Ergodic Theory Dynam. Systems 1983 501 508

[3] Bowen, Rufus Markov partitions for Axiom 𝐴 diffeomorphisms Amer. J. Math. 1970 725 747

[4] Kim, K. H., Roush, F. W. Some results on decidability of shift equivalence J. Combin. Inform. System Sci. 1979 123 146

[5] Kim, K. H., Roush, F. W., Wagoner, J. B. Automorphisms of the dimension group and gyration numbers J. Amer. Math. Soc. 1992 191 212

[6] Nasu, Masakazu Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts 1988 564 607

[7] Williams, R. F. Classification of subshifts of finite type Ann. of Math. (2) 1973

Cité par Sources :