Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1992_1124979_1,
author = {Benoist, Yves and Foulon, Patrick and Labourie, Fran\~A{\textsection}ois},
title = {Flots {d\^aAnosov} {\~A~} distributions stable et instable {diff\~A{\textcopyright}rentiables}},
journal = {Journal of the American Mathematical Society},
pages = {33--74},
publisher = {mathdoc},
volume = {05},
number = {1},
year = {1992},
doi = {10.1090/S0894-0347-1992-1124979-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124979-1/}
}
TY - JOUR AU - Benoist, Yves AU - Foulon, Patrick AU - Labourie, François TI - Flots dâAnosov à distributions stable et instable différentiables JO - Journal of the American Mathematical Society PY - 1992 SP - 33 EP - 74 VL - 05 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124979-1/ DO - 10.1090/S0894-0347-1992-1124979-1 ID - 10_1090_S0894_0347_1992_1124979_1 ER -
%0 Journal Article %A Benoist, Yves %A Foulon, Patrick %A Labourie, François %T Flots dâAnosov à distributions stable et instable différentiables %J Journal of the American Mathematical Society %D 1992 %P 33-74 %V 05 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124979-1/ %R 10.1090/S0894-0347-1992-1124979-1 %F 10_1090_S0894_0347_1992_1124979_1
Benoist, Yves; Foulon, Patrick; Labourie, François. Flots dâAnosov à distributions stable et instable différentiables. Journal of the American Mathematical Society, Tome 05 (1992) no. 1, pp. 33-74. doi: 10.1090/S0894-0347-1992-1124979-1
[1] Geodesic flows on closed Riemannian manifolds of negative curvature Trudy Mat. Inst. Steklov. 1967 209
[2] , , Flots dâAnosov à distributions stable et instable différentiables C. R. Acad. Sci. Paris Sér. I Math. 1990 351 354
[3] , Visibility manifolds Pacific J. Math. 1973 45 109
[4] Geodesic flows on manifolds of negative curvature with smooth horospheric foliations Ergodic Theory Dynam. Systems 1991 653 686
[5] , Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows Ergodic Theory Dynam. Systems 1989 427 432
[6] , Anosov flows with smooth foliations and rigidity of geodesic flows on three-dimensional manifolds of negative curvature Ergodic Theory Dynam. Systems 1990 657 670
[7] , Flots dâAnosov à distributions de Liapounov différentiables C. R. Acad. Sci. Paris Sér. I Math. 1989 255 260
[8] Flots dâAnosov dont les feuilletages stables sont différentiables Ann. Sci. Ãcole Norm. Sup. (4) 1987 251 270
[9] , , Connections, curvature, and cohomology 1976
[10] Rigid transformations groups 1988 65 139
[11] , Stable manifolds and hyperbolic sets 1970 133 163
[12] , Differentiability, rigidity and Godbillon-Vey classes for Anosov flows Inst. Hautes Ãtudes Sci. Publ. Math. 1990
[13] Differential geometry, Lie groups, and symmetric spaces 1978
[14] Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations Ergodic Theory Dynam. Systems 1988 215 239
[15] , Foundations of differential geometry. Vol I 1963
[16] Intersections of discrete subgroups with Cartan subgroups J. Indian Math. Soc. 1970
[17] Discrete subgroups of Lie groups 1972
[18] Algebraic structures of symmetric domains 1980
Cité par Sources :