The uniqueness of groups of Lyons type
Journal of the American Mathematical Society, Tome 05 (1992) no. 1, pp. 75-98

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1992_1124978_X,
     author = {Aschbacher, Michael and Segev, Yoav},
     title = {The uniqueness of groups of {Lyons} type},
     journal = {Journal of the American Mathematical Society},
     pages = {75--98},
     publisher = {mathdoc},
     volume = {05},
     number = {1},
     year = {1992},
     doi = {10.1090/S0894-0347-1992-1124978-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124978-X/}
}
TY  - JOUR
AU  - Aschbacher, Michael
AU  - Segev, Yoav
TI  - The uniqueness of groups of Lyons type
JO  - Journal of the American Mathematical Society
PY  - 1992
SP  - 75
EP  - 98
VL  - 05
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124978-X/
DO  - 10.1090/S0894-0347-1992-1124978-X
ID  - 10_1090_S0894_0347_1992_1124978_X
ER  - 
%0 Journal Article
%A Aschbacher, Michael
%A Segev, Yoav
%T The uniqueness of groups of Lyons type
%J Journal of the American Mathematical Society
%D 1992
%P 75-98
%V 05
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124978-X/
%R 10.1090/S0894-0347-1992-1124978-X
%F 10_1090_S0894_0347_1992_1124978_X
Aschbacher, Michael; Segev, Yoav. The uniqueness of groups of Lyons type. Journal of the American Mathematical Society, Tome 05 (1992) no. 1, pp. 75-98. doi: 10.1090/S0894-0347-1992-1124978-X

[1] Aschbacher, Michael Finite group theory 1986

[2] Aschbacher, Michael, Segev, Yoav Extending morphisms of groups and graphs Ann. of Math. (2) 1992 297 323

[3] Brauer, Richard, Suzuki, Michio On finite groups of even order whose 2-Sylow group is a quaternion group Proc. Nat. Acad. Sci. U.S.A. 1959 1757 1759

[4] Finkelstein, Larry The maximal subgroups of Conway’s group 𝐶₃ and McLaughlin’s group J. Algebra 1973 58 89

[5] James, G. D. The modular characters of the Mathieu groups J. Algebra 1973 57 111

[6] Janko, Zvonimir, Wong, S. K. A characterization of the McLaughlin’s simple group J. Algebra 1972 203 225

[7] Lyons, Richard Evidence for a new finite simple group J. Algebra 1972 540 569

[8] Quillen, Daniel Homotopy properties of the poset of nontrivial 𝑝-subgroups of a group Adv. in Math. 1978 101 128

[9] Sims, Charles C. The existence and uniqueness of Lyons’ group 1973 138 141

[10] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A. 𝔸𝕋𝕃𝔸𝕊 of finite groups 1985

Cité par Sources :