A partition theorem for pairs of finite sets
    
    
  
  
  
      
      
      
        
Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 647-656
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source American Mathematical Society
            
              Every partition of ${[{[{\omega _1}]^{  \omega }}]^2}$ into finitely many pieces has a cofinal homogeneous set. Furthermore, it is consistent that every directed partially ordered set satisfies the partition property if and only if it has finite character.        
            
            
            
          
        
      @article{10_1090_S0894_0347_1991_1122043_8,
     author = {Jech, Thomas and Shelah, Saharon},
     title = {A partition theorem for pairs of finite sets},
     journal = {Journal of the American Mathematical Society},
     pages = {647--656},
     publisher = {mathdoc},
     volume = {04},
     number = {4},
     year = {1991},
     doi = {10.1090/S0894-0347-1991-1122043-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1122043-8/}
}
                      
                      
                    TY - JOUR AU - Jech, Thomas AU - Shelah, Saharon TI - A partition theorem for pairs of finite sets JO - Journal of the American Mathematical Society PY - 1991 SP - 647 EP - 656 VL - 04 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1122043-8/ DO - 10.1090/S0894-0347-1991-1122043-8 ID - 10_1090_S0894_0347_1991_1122043_8 ER -
%0 Journal Article %A Jech, Thomas %A Shelah, Saharon %T A partition theorem for pairs of finite sets %J Journal of the American Mathematical Society %D 1991 %P 647-656 %V 04 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1122043-8/ %R 10.1090/S0894-0347-1991-1122043-8 %F 10_1090_S0894_0347_1991_1122043_8
Jech, Thomas; Shelah, Saharon. A partition theorem for pairs of finite sets. Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 647-656. doi: 10.1090/S0894-0347-1991-1122043-8
[1] , , Ramsey theory 1980
[2] Some combinatorial problems concerning uncountable cardinals Ann. Math. Logic 1972/73 165 198
Cité par Sources :
