A partition theorem for pairs of finite sets
Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 647-656

Voir la notice de l'article provenant de la source American Mathematical Society

Every partition of ${[{[{\omega _1}]^{ \omega }}]^2}$ into finitely many pieces has a cofinal homogeneous set. Furthermore, it is consistent that every directed partially ordered set satisfies the partition property if and only if it has finite character.
@article{10_1090_S0894_0347_1991_1122043_8,
     author = {Jech, Thomas and Shelah, Saharon},
     title = {A partition theorem for pairs of finite sets},
     journal = {Journal of the American Mathematical Society},
     pages = {647--656},
     publisher = {mathdoc},
     volume = {04},
     number = {4},
     year = {1991},
     doi = {10.1090/S0894-0347-1991-1122043-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1122043-8/}
}
TY  - JOUR
AU  - Jech, Thomas
AU  - Shelah, Saharon
TI  - A partition theorem for pairs of finite sets
JO  - Journal of the American Mathematical Society
PY  - 1991
SP  - 647
EP  - 656
VL  - 04
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1122043-8/
DO  - 10.1090/S0894-0347-1991-1122043-8
ID  - 10_1090_S0894_0347_1991_1122043_8
ER  - 
%0 Journal Article
%A Jech, Thomas
%A Shelah, Saharon
%T A partition theorem for pairs of finite sets
%J Journal of the American Mathematical Society
%D 1991
%P 647-656
%V 04
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1122043-8/
%R 10.1090/S0894-0347-1991-1122043-8
%F 10_1090_S0894_0347_1991_1122043_8
Jech, Thomas; Shelah, Saharon. A partition theorem for pairs of finite sets. Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 647-656. doi: 10.1090/S0894-0347-1991-1122043-8

[1] Graham, Ronald L., Rothschild, Bruce L., Spencer, Joel H. Ramsey theory 1980

[2] Jech, Thomas J. Some combinatorial problems concerning uncountable cardinals Ann. Math. Logic 1972/73 165 198

Cité par Sources :