Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 693-727

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1991_1119200_3,
     author = {Coti Zelati, Vittorio and Rabinowitz, Paul H.},
     title = {Homoclinic orbits for second order {Hamiltonian} systems possessing superquadratic potentials},
     journal = {Journal of the American Mathematical Society},
     pages = {693--727},
     publisher = {mathdoc},
     volume = {04},
     number = {4},
     year = {1991},
     doi = {10.1090/S0894-0347-1991-1119200-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1119200-3/}
}
TY  - JOUR
AU  - Coti Zelati, Vittorio
AU  - Rabinowitz, Paul H.
TI  - Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
JO  - Journal of the American Mathematical Society
PY  - 1991
SP  - 693
EP  - 727
VL  - 04
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1119200-3/
DO  - 10.1090/S0894-0347-1991-1119200-3
ID  - 10_1090_S0894_0347_1991_1119200_3
ER  - 
%0 Journal Article
%A Coti Zelati, Vittorio
%A Rabinowitz, Paul H.
%T Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
%J Journal of the American Mathematical Society
%D 1991
%P 693-727
%V 04
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1119200-3/
%R 10.1090/S0894-0347-1991-1119200-3
%F 10_1090_S0894_0347_1991_1119200_3
Coti Zelati, Vittorio; Rabinowitz, Paul H. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 693-727. doi: 10.1090/S0894-0347-1991-1119200-3

[1] Rabinowitz, Paul H. Homoclinic orbits for a class of Hamiltonian systems Proc. Roy. Soc. Edinburgh Sect. A 1990 33 38

[2] Coti Zelati, Vittorio, Ekeland, Ivar, Sã©Rã©, ÉRic A variational approach to homoclinic orbits in Hamiltonian systems Math. Ann. 1990 133 160

[3] Hofer, H., Wysocki, K. First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems Math. Ann. 1990 483 503

[4] Tanaka, Kazunaga Homoclinic orbits in a first order superquadratic Hamiltonian system: convergence of subharmonic orbits J. Differential Equations 1991 315 339

[5] Rabinowitz, Paul H. Minimax methods in critical point theory with applications to differential equations 1986

Cité par Sources :