Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 693-727
Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1991_1119200_3,
author = {Coti Zelati, Vittorio and Rabinowitz, Paul H.},
title = {Homoclinic orbits for second order {Hamiltonian} systems possessing superquadratic potentials},
journal = {Journal of the American Mathematical Society},
pages = {693--727},
publisher = {mathdoc},
volume = {04},
number = {4},
year = {1991},
doi = {10.1090/S0894-0347-1991-1119200-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1119200-3/}
}
TY - JOUR AU - Coti Zelati, Vittorio AU - Rabinowitz, Paul H. TI - Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials JO - Journal of the American Mathematical Society PY - 1991 SP - 693 EP - 727 VL - 04 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1119200-3/ DO - 10.1090/S0894-0347-1991-1119200-3 ID - 10_1090_S0894_0347_1991_1119200_3 ER -
%0 Journal Article %A Coti Zelati, Vittorio %A Rabinowitz, Paul H. %T Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials %J Journal of the American Mathematical Society %D 1991 %P 693-727 %V 04 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1119200-3/ %R 10.1090/S0894-0347-1991-1119200-3 %F 10_1090_S0894_0347_1991_1119200_3
Coti Zelati, Vittorio; Rabinowitz, Paul H. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 693-727. doi: 10.1090/S0894-0347-1991-1119200-3
[1] Homoclinic orbits for a class of Hamiltonian systems Proc. Roy. Soc. Edinburgh Sect. A 1990 33 38
[2] , , A variational approach to homoclinic orbits in Hamiltonian systems Math. Ann. 1990 133 160
[3] , First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems Math. Ann. 1990 483 503
[4] Homoclinic orbits in a first order superquadratic Hamiltonian system: convergence of subharmonic orbits J. Differential Equations 1991 315 339
[5] Minimax methods in critical point theory with applications to differential equations 1986
Cité par Sources :