Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1991_1115789_9,
author = {Sj\~A{\textparagraph}strand, Johannes and Zworski, Maciej},
title = {Complex scaling and the distribution of scattering poles},
journal = {Journal of the American Mathematical Society},
pages = {729--769},
publisher = {mathdoc},
volume = {04},
number = {4},
year = {1991},
doi = {10.1090/S0894-0347-1991-1115789-9},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1115789-9/}
}
TY - JOUR AU - Sjöstrand, Johannes AU - Zworski, Maciej TI - Complex scaling and the distribution of scattering poles JO - Journal of the American Mathematical Society PY - 1991 SP - 729 EP - 769 VL - 04 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1115789-9/ DO - 10.1090/S0894-0347-1991-1115789-9 ID - 10_1090_S0894_0347_1991_1115789_9 ER -
%0 Journal Article %A Sjöstrand, Johannes %A Zworski, Maciej %T Complex scaling and the distribution of scattering poles %J Journal of the American Mathematical Society %D 1991 %P 729-769 %V 04 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1115789-9/ %R 10.1090/S0894-0347-1991-1115789-9 %F 10_1090_S0894_0347_1991_1115789_9
Sjöstrand, Johannes; Zworski, Maciej. Complex scaling and the distribution of scattering poles. Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 729-769. doi: 10.1090/S0894-0347-1991-1115789-9
[1] , A class of analytic perturbations for one-body Schrödinger Hamiltonians Comm. Math. Phys. 1971 269 279
[2] , Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions Comm. Math. Phys. 1971 280 294
[3] Pseudo-laplaciens. II Ann. Inst. Fourier (Grenoble) 1983 87 113
[4] , Introduction to the theory of linear nonselfadjoint operators 1969
[5] , Comparaison entre les diverses notions de résonances Helv. Phys. Acta 1987 992 1003
[6] , On diamagnetism and de Haas-van Alphen effect Ann. Inst. H. Poincaré Phys. Théor. 1990 303 375
[7] The analysis of linear partial differential operators. I 1983
[8] Distortion analyticity and molecular resonance curves Ann. Inst. H. Poincaré Phys. Théor. 1986 339 358
[9] A polynomial bound on the number of the scattering poles for a potential in even-dimensional spaces ð â¿ Comm. Partial Differential Equations 1986 367 396
[10] A polynomial bound on the number of the scattering poles for a potential in even-dimensional spaces ð â¿ Comm. Partial Differential Equations 1986 367 396
[11] , Scattering theory 1967
[12] Fonctions harmoniques et spectre singulier Ann. Sci. Ãcole Norm. Sup. (4) 1980 269 291
[13] Prolongement des solutions holomorphes de problèmes aux limites Ann. Inst. Fourier (Grenoble) 1985 93 116
[14] Trace distributions associated to the Schrödinger operator J. Anal. Math. 1992 133 160
[15] Scattering theory and the trace of the wave group J. Functional Analysis 1982 29 40
[16] Weyl asymptotics for the phase in obstacle scattering Comm. Partial Differential Equations 1988 1431 1439
[17] Geometric bounds on the density of resonances for semiclassical problems Duke Math. J. 1990 1 57
[18] Asymptotic methods in equations of mathematical physics 1989
[19] Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in ð â¿ Math. Ann. 1991 39 49
[20] Distribution of poles for scattering on the real line J. Funct. Anal. 1987 277 296
[21] Sharp polynomial bounds on the number of scattering poles of radial potentials J. Funct. Anal. 1989 370 403
[22] Sharp polynomial bounds on the number of scattering poles Duke Math. J. 1989 311 323
Cité par Sources :