Complex scaling and the distribution of scattering poles
Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 729-769

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1991_1115789_9,
     author = {Sj\~A{\textparagraph}strand, Johannes and Zworski, Maciej},
     title = {Complex scaling and the distribution of scattering poles},
     journal = {Journal of the American Mathematical Society},
     pages = {729--769},
     publisher = {mathdoc},
     volume = {04},
     number = {4},
     year = {1991},
     doi = {10.1090/S0894-0347-1991-1115789-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1115789-9/}
}
TY  - JOUR
AU  - Sjöstrand, Johannes
AU  - Zworski, Maciej
TI  - Complex scaling and the distribution of scattering poles
JO  - Journal of the American Mathematical Society
PY  - 1991
SP  - 729
EP  - 769
VL  - 04
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1115789-9/
DO  - 10.1090/S0894-0347-1991-1115789-9
ID  - 10_1090_S0894_0347_1991_1115789_9
ER  - 
%0 Journal Article
%A Sjöstrand, Johannes
%A Zworski, Maciej
%T Complex scaling and the distribution of scattering poles
%J Journal of the American Mathematical Society
%D 1991
%P 729-769
%V 04
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1115789-9/
%R 10.1090/S0894-0347-1991-1115789-9
%F 10_1090_S0894_0347_1991_1115789_9
Sjöstrand, Johannes; Zworski, Maciej. Complex scaling and the distribution of scattering poles. Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 729-769. doi: 10.1090/S0894-0347-1991-1115789-9

[1] Aguilar, J., Combes, J. M. A class of analytic perturbations for one-body Schrödinger Hamiltonians Comm. Math. Phys. 1971 269 279

[2] Balslev, E., Combes, J. M. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions Comm. Math. Phys. 1971 280 294

[3] Colin De Verdiã¨Re, Yves Pseudo-laplaciens. II Ann. Inst. Fourier (Grenoble) 1983 87 113

[4] Gohberg, I. C., Kreä­N, M. G. Introduction to the theory of linear nonselfadjoint operators 1969

[5] Helffer, Bernard, Martinez, Andr㩠Comparaison entre les diverses notions de résonances Helv. Phys. Acta 1987 992 1003

[6] Helffer, B., Sjã¶Strand, J. On diamagnetism and de Haas-van Alphen effect Ann. Inst. H. Poincaré Phys. Théor. 1990 303 375

[7] Hã¶Rmander, Lars The analysis of linear partial differential operators. I 1983

[8] Hunziker, W. Distortion analyticity and molecular resonance curves Ann. Inst. H. Poincaré Phys. Théor. 1986 339 358

[9] Intissar, Ahmed A polynomial bound on the number of the scattering poles for a potential in even-dimensional spaces 𝑅ⁿ Comm. Partial Differential Equations 1986 367 396

[10] Intissar, Ahmed A polynomial bound on the number of the scattering poles for a potential in even-dimensional spaces 𝑅ⁿ Comm. Partial Differential Equations 1986 367 396

[11] Lax, Peter D., Phillips, Ralph S. Scattering theory 1967

[12] Lebeau, Gilles Fonctions harmoniques et spectre singulier Ann. Sci. École Norm. Sup. (4) 1980 269 291

[13] Martinez, Andr㩠Prolongement des solutions holomorphes de problèmes aux limites Ann. Inst. Fourier (Grenoble) 1985 93 116

[14] Melin, Anders Trace distributions associated to the Schrödinger operator J. Anal. Math. 1992 133 160

[15] Melrose, Richard Scattering theory and the trace of the wave group J. Functional Analysis 1982 29 40

[16] Melrose, Richard B. Weyl asymptotics for the phase in obstacle scattering Comm. Partial Differential Equations 1988 1431 1439

[17] Sjã¶Strand, Johannes Geometric bounds on the density of resonances for semiclassical problems Duke Math. J. 1990 1 57

[18] Vaä­Nberg, B. R. Asymptotic methods in equations of mathematical physics 1989

[19] Vodev, Georgi Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in 𝑅ⁿ Math. Ann. 1991 39 49

[20] Zworski, Maciej Distribution of poles for scattering on the real line J. Funct. Anal. 1987 277 296

[21] Zworski, Maciej Sharp polynomial bounds on the number of scattering poles of radial potentials J. Funct. Anal. 1989 370 403

[22] Zworski, Maciej Sharp polynomial bounds on the number of scattering poles Duke Math. J. 1989 311 323

Cité par Sources :