Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1991_1115788_7,
author = {Nadel, Alan Michael},
title = {The boundedness of degree of {Fano} varieties with {Picard} number one},
journal = {Journal of the American Mathematical Society},
pages = {681--692},
publisher = {mathdoc},
volume = {04},
number = {4},
year = {1991},
doi = {10.1090/S0894-0347-1991-1115788-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1115788-7/}
}
TY - JOUR AU - Nadel, Alan Michael TI - The boundedness of degree of Fano varieties with Picard number one JO - Journal of the American Mathematical Society PY - 1991 SP - 681 EP - 692 VL - 04 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1115788-7/ DO - 10.1090/S0894-0347-1991-1115788-7 ID - 10_1090_S0894_0347_1991_1115788_7 ER -
%0 Journal Article %A Nadel, Alan Michael %T The boundedness of degree of Fano varieties with Picard number one %J Journal of the American Mathematical Society %D 1991 %P 681-692 %V 04 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1115788-7/ %R 10.1090/S0894-0347-1991-1115788-7 %F 10_1090_S0894_0347_1991_1115788_7
Nadel, Alan Michael. The boundedness of degree of Fano varieties with Picard number one. Journal of the American Mathematical Society, Tome 04 (1991) no. 4, pp. 681-692. doi: 10.1090/S0894-0347-1991-1115788-7
[1] Diophantine approximation on abelian varieties Ann. of Math. (2) 1991 549 576
[2] Double projection from a line onto Fano 3-folds of the first kind Mat. Sb. 1989 260 278
[3] , Riemann-Roch type inequalities Amer. J. Math. 1983 229 252
[4] Polarized varieties with a given Hilbert polynomial Amer. J. Math. 1972 1027 1077
[5] Projective manifolds with ample tangent bundles Ann. of Math. (2) 1979 593 606
[6] , Classification of Fano 3-folds with ðµââ¥2 Manuscripta Math. 1981/82 147 162
[7] Biregular classification of Fano 3-folds and Fano manifolds of coindex 3 Proc. Nat. Acad. Sci. U.S.A. 1989 3000 3002
[8] Multiplier ideal sheaves and existence of Kähler-Einstein metrics of positive scalar curvature Proc. Nat. Acad. Sci. U.S.A. 1989 7299 7300
[9] Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature Ann. of Math. (2) 1990 549 596
Cité par Sources :