Existence de nappes de tourbillon en dimension deux
Journal of the American Mathematical Society, Tome 04 (1991) no. 3, pp. 553-586

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1991_1102579_6,
     author = {Delort, Jean-Marc},
     title = {Existence de nappes de tourbillon en dimension deux},
     journal = {Journal of the American Mathematical Society},
     pages = {553--586},
     publisher = {mathdoc},
     volume = {04},
     number = {3},
     year = {1991},
     doi = {10.1090/S0894-0347-1991-1102579-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1102579-6/}
}
TY  - JOUR
AU  - Delort, Jean-Marc
TI  - Existence de nappes de tourbillon en dimension deux
JO  - Journal of the American Mathematical Society
PY  - 1991
SP  - 553
EP  - 586
VL  - 04
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1102579-6/
DO  - 10.1090/S0894-0347-1991-1102579-6
ID  - 10_1090_S0894_0347_1991_1102579_6
ER  - 
%0 Journal Article
%A Delort, Jean-Marc
%T Existence de nappes de tourbillon en dimension deux
%J Journal of the American Mathematical Society
%D 1991
%P 553-586
%V 04
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1102579-6/
%R 10.1090/S0894-0347-1991-1102579-6
%F 10_1090_S0894_0347_1991_1102579_6
Delort, Jean-Marc. Existence de nappes de tourbillon en dimension deux. Journal of the American Mathematical Society, Tome 04 (1991) no. 3, pp. 553-586. doi: 10.1090/S0894-0347-1991-1102579-6

[1] Abraham, R., Marsden, J. E., Ratiu, T. Manifolds, tensor analysis, and applications 1988

[2] Chemin, J.-Y. Sur le mouvement des particules d’un fluide parfait incompressible bidimensionnel Invent. Math. 1991 599 629

[3] Diperna, Ronald J., Majda, Andrew J. Concentrations in regularizations for 2-D incompressible flow Comm. Pure Appl. Math. 1987 301 345

[4] Diperna, Ronald J., Majda, Andrew Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow J. Amer. Math. Soc. 1988 59 95

[5] Ebin, David G., Marsden, Jerrold Groups of diffeomorphisms and the motion of an incompressible fluid Ann. of Math. (2) 1970 102 163

[6] Georgescu, V. Some boundary value problems for differential forms on compact Riemannian manifolds Ann. Mat. Pura Appl. (4) 1979 159 198

[7] Greengard, Claude, Thomann, Enrique On DiPerna-Majda concentration sets for two-dimensional incompressible flow Comm. Pure Appl. Math. 1988 295 303

[8] Kato, Tosio On classical solutions of the two-dimensional nonstationary Euler equation Arch. Rational Mech. Anal. 1967 188 200

[9] Zheng, Yu Xi Concentration-cancellation for the velocity fields in two-dimensional incompressible fluid flows Comm. Math. Phys. 1991 581 594

[10] Krasny, Robert A study of singularity formation in a vortex sheet by the point-vortex approximation J. Fluid Mech. 1986 65 93

[11] Majda, Andrew Vortex dynamics: numerical analysis, scientific computing, and mathematical theory 1988 153 182

Cité par Sources :