On the envelope of holomorphy of a 2-sphere in 𝐶²
Journal of the American Mathematical Society, Tome 04 (1991) no. 3, pp. 623-646

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1991_1094437_0,
     author = {Bedford, Eric and Klingenberg, Wilhelm},
     title = {On the envelope of holomorphy of a 2-sphere in {{\dh}{\textparagraph}\^A{\texttwosuperior}}},
     journal = {Journal of the American Mathematical Society},
     pages = {623--646},
     publisher = {mathdoc},
     volume = {04},
     number = {3},
     year = {1991},
     doi = {10.1090/S0894-0347-1991-1094437-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1094437-0/}
}
TY  - JOUR
AU  - Bedford, Eric
AU  - Klingenberg, Wilhelm
TI  - On the envelope of holomorphy of a 2-sphere in 𝐶²
JO  - Journal of the American Mathematical Society
PY  - 1991
SP  - 623
EP  - 646
VL  - 04
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1094437-0/
DO  - 10.1090/S0894-0347-1991-1094437-0
ID  - 10_1090_S0894_0347_1991_1094437_0
ER  - 
%0 Journal Article
%A Bedford, Eric
%A Klingenberg, Wilhelm
%T On the envelope of holomorphy of a 2-sphere in 𝐶²
%J Journal of the American Mathematical Society
%D 1991
%P 623-646
%V 04
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1094437-0/
%R 10.1090/S0894-0347-1991-1094437-0
%F 10_1090_S0894_0347_1991_1094437_0
Bedford, Eric; Klingenberg, Wilhelm. On the envelope of holomorphy of a 2-sphere in 𝐶². Journal of the American Mathematical Society, Tome 04 (1991) no. 3, pp. 623-646. doi: 10.1090/S0894-0347-1991-1094437-0

[1] Bedford, Eric Levi flat hypersurfaces in 𝐶² with prescribed boundary: stability Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1982 529 570

[2] Bedford, Eric, Gaveau, Bernard Envelopes of holomorphy of certain 2-spheres in 𝐶² Amer. J. Math. 1983 975 1009

[3] Bishop, Errett Differentiable manifolds in complex Euclidean space Duke Math. J. 1965 1 21

[4] Bishop, Errett Conditions for the analyticity of certain sets Michigan Math. J. 1964 289 304

[5] Browder, Andrew Cohomology of maximal ideal spaces Bull. Amer. Math. Soc. 1961 515 516

[6] Chirka, E. M. Regularity of the boundaries of analytic sets Mat. Sb. (N.S.) 1982

[7] Debiard, Amã©Dã©E, Gaveau, Bernard Problème de Dirichlet pour l’équation de Lévi Bull. Sci. Math. (2) 1978 369 386

[8] Forstneriä, Franc Analytic disks with boundaries in a maximal real submanifold of 𝐶² Ann. Inst. Fourier (Grenoble) 1987 1 44

[9] Forstneriä, Franc Polynomial hulls of sets fibered over the circle Indiana Univ. Math. J. 1988 869 889

[10] Freeman, Michael The polynomial hull of a thin two-manifold Pacific J. Math. 1971 377 389

[11] Freeman, Michael The uniform algebra generated by 𝑧 and a smooth even function Math. Ann. 1972 269 274

[12] Golubitsky, M., Guillemin, V. Stable mappings and their singularities 1973

[13] Greenfield, Stephen J., Wallach, Nolan R. Extendibility properties of submanifolds of C2 1970 77 85

[14] Kenig, Carlos E., Webster, Sidney M. The local hull of holomorphy of a surface in the space of two complex variables Invent. Math. 1982 1 21

[15] Klingenberg, Wilhelm, Jr. Asymptotic curves on real analytic surfaces in 𝐶² Math. Ann. 1985 149 162

[16] Lai, Hon Fei Real submanifolds of codimension two in complex manifolds Trans. Amer. Math. Soc. 1981 331 352

[17] Milnor, John Singular points of complex hypersurfaces 1968

[18] Moser, Jã¼Rgen Analytic surfaces in 𝐶² and their local hull of holomorphy Ann. Acad. Sci. Fenn. Ser. A I Math. 1985 397 410

[19] Moser, Jã¼Rgen K., Webster, Sidney M. Normal forms for real surfaces in 𝐶² near complex tangents and hyperbolic surface transformations Acta Math. 1983 255 296

Cité par Sources :