Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1991_1094437_0,
author = {Bedford, Eric and Klingenberg, Wilhelm},
title = {On the envelope of holomorphy of a 2-sphere in {{\dh}{\textparagraph}\^A{\texttwosuperior}}},
journal = {Journal of the American Mathematical Society},
pages = {623--646},
publisher = {mathdoc},
volume = {04},
number = {3},
year = {1991},
doi = {10.1090/S0894-0347-1991-1094437-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1094437-0/}
}
TY - JOUR AU - Bedford, Eric AU - Klingenberg, Wilhelm TI - On the envelope of holomorphy of a 2-sphere in ð¶Â² JO - Journal of the American Mathematical Society PY - 1991 SP - 623 EP - 646 VL - 04 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1094437-0/ DO - 10.1090/S0894-0347-1991-1094437-0 ID - 10_1090_S0894_0347_1991_1094437_0 ER -
%0 Journal Article %A Bedford, Eric %A Klingenberg, Wilhelm %T On the envelope of holomorphy of a 2-sphere in ð¶Â² %J Journal of the American Mathematical Society %D 1991 %P 623-646 %V 04 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1094437-0/ %R 10.1090/S0894-0347-1991-1094437-0 %F 10_1090_S0894_0347_1991_1094437_0
Bedford, Eric; Klingenberg, Wilhelm. On the envelope of holomorphy of a 2-sphere in ð¶Â². Journal of the American Mathematical Society, Tome 04 (1991) no. 3, pp. 623-646. doi: 10.1090/S0894-0347-1991-1094437-0
[1] Levi flat hypersurfaces in ð¶Â² with prescribed boundary: stability Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1982 529 570
[2] , Envelopes of holomorphy of certain 2-spheres in ð¶Â² Amer. J. Math. 1983 975 1009
[3] Differentiable manifolds in complex Euclidean space Duke Math. J. 1965 1 21
[4] Conditions for the analyticity of certain sets Michigan Math. J. 1964 289 304
[5] Cohomology of maximal ideal spaces Bull. Amer. Math. Soc. 1961 515 516
[6] Regularity of the boundaries of analytic sets Mat. Sb. (N.S.) 1982
[7] , Problème de Dirichlet pour lâéquation de Lévi Bull. Sci. Math. (2) 1978 369 386
[8] Analytic disks with boundaries in a maximal real submanifold of ð¶Â² Ann. Inst. Fourier (Grenoble) 1987 1 44
[9] Polynomial hulls of sets fibered over the circle Indiana Univ. Math. J. 1988 869 889
[10] The polynomial hull of a thin two-manifold Pacific J. Math. 1971 377 389
[11] The uniform algebra generated by ð§ and a smooth even function Math. Ann. 1972 269 274
[12] , Stable mappings and their singularities 1973
[13] , Extendibility properties of submanifolds of C2 1970 77 85
[14] , The local hull of holomorphy of a surface in the space of two complex variables Invent. Math. 1982 1 21
[15] Asymptotic curves on real analytic surfaces in ð¶Â² Math. Ann. 1985 149 162
[16] Real submanifolds of codimension two in complex manifolds Trans. Amer. Math. Soc. 1981 331 352
[17] Singular points of complex hypersurfaces 1968
[18] Analytic surfaces in ð¶Â² and their local hull of holomorphy Ann. Acad. Sci. Fenn. Ser. A I Math. 1985 397 410
[19] , Normal forms for real surfaces in ð¶Â² near complex tangents and hyperbolic surface transformations Acta Math. 1983 255 296
Cité par Sources :