Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence
Journal of the American Mathematical Society, Tome 04 (1991) no. 2, pp. 265-321

Voir la notice de l'article provenant de la source American Mathematical Society

We first prove an adiabatic limit formula for the $\eta$-invariant of a Dirac operator, generalizing the recent work of J.-M. Bismut and J. Cheeger. An essential part of the proof is the study of the spectrum of the Dirac operator in the adiabatic limit. A new contribution arises in the adiabatic limit formula, in the form of a global term coming from the (asymptotically) very small eigenvalues. We then proceed to show that, for the signature operator, these very small eigenvalues have a purely topological significance. In fact, we show that the Leray spectral sequence can be recast in terms of these very small eigenvalues. This leads to a refined adiabatic limit formula for the signature operator where the global term is identified with a topological invariant, the signature of a certain bilinear form arising from the Leray spectral sequence. As an interesting application, we give intrinsic characterization of the non-multiplicativity of signature.
@article{10_1090_S0894_0347_1991_1088332_0,
     author = {Dai, Xianzhe},
     title = {Adiabatic limits, nonmultiplicativity of signature, and {Leray} spectral sequence},
     journal = {Journal of the American Mathematical Society},
     pages = {265--321},
     publisher = {mathdoc},
     volume = {04},
     number = {2},
     year = {1991},
     doi = {10.1090/S0894-0347-1991-1088332-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1088332-0/}
}
TY  - JOUR
AU  - Dai, Xianzhe
TI  - Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence
JO  - Journal of the American Mathematical Society
PY  - 1991
SP  - 265
EP  - 321
VL  - 04
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1088332-0/
DO  - 10.1090/S0894-0347-1991-1088332-0
ID  - 10_1090_S0894_0347_1991_1088332_0
ER  - 
%0 Journal Article
%A Dai, Xianzhe
%T Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence
%J Journal of the American Mathematical Society
%D 1991
%P 265-321
%V 04
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1088332-0/
%R 10.1090/S0894-0347-1991-1088332-0
%F 10_1090_S0894_0347_1991_1088332_0
Dai, Xianzhe. Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence. Journal of the American Mathematical Society, Tome 04 (1991) no. 2, pp. 265-321. doi: 10.1090/S0894-0347-1991-1088332-0

[1] Atiyah, M. F. The signature of fibre-bundles 1969 73 84

[2] Atiyah, M. F., Donnelly, H., Singer, I. M. Eta invariants, signature defects of cusps, and values of 𝐿-functions Ann. of Math. (2) 1983 131 177

[3] Atiyah, M. F., Patodi, V. K., Singer, I. M. Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 1975 43 69

[4] Atiyah, M. F., Singer, I. M. The index of elliptic operators. I Ann. of Math. (2) 1968 484 530

[5] Atiyah, M. F., Singer, I. M. The index of elliptic operators. III Ann. of Math. (2) 1968 546 604

[6] Atiyah, M. F., Singer, I. M. The index of elliptic operators. V Ann. of Math. (2) 1971 139 149

[7] Bismut, Jean-Michel The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs Invent. Math. 1986 91 151

[8] Bismut, Jean-Michel, Cheeger, Jeff Invariants êta et indice des familles pour des variétés à bord C. R. Acad. Sci. Paris Sér. I Math. 1987 127 130

[9] Bismut, Jean-Michel, Cheeger, Jeff 𝜂-invariants and their adiabatic limits J. Amer. Math. Soc. 1989 33 70

[10] Bismut, Jean-Michel, Cheeger, Jeff Families index for manifolds with boundary, superconnections, and cones. I. Families of manifolds with boundary and Dirac operators J. Funct. Anal. 1990 313 363

[11] Bismut, Jean-Michel, Cheeger, Jeff Families index for manifolds with boundary, superconnections and cones. II. The Chern character J. Funct. Anal. 1990 306 354

[12] Bismut, Jean-Michel, Freed, Daniel S. The analysis of elliptic families. I. Metrics and connections on determinant bundles Comm. Math. Phys. 1986 159 176

[13] Bismut, Jean-Michel, Freed, Daniel S. The analysis of elliptic families. I. Metrics and connections on determinant bundles Comm. Math. Phys. 1986 159 176

[14] Cheeger, Jeff Spectral geometry of singular Riemannian spaces J. Differential Geom. 1983

[15] Cheeger, Jeff 𝜂-invariants, the adiabatic approximation and conical singularities. I. The adiabatic approximation J. Differential Geom. 1987 175 221

[16] Cheeger, Jeff, Gromov, Mikhail, Taylor, Michael Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds J. Differential Geometry 1982 15 53

[17] Chern, S. S., Hirzebruch, F., Serre, J.-P. On the index of a fibered manifold Proc. Amer. Math. Soc. 1957 587 596

[18] Donnelly, Harold Local index theorem for families Michigan Math. J. 1988 11 20

[19] Freed, Daniel S. Determinants, torsion, and strings Comm. Math. Phys. 1986 483 513

[20] Getzler, Ezra A short proof of the local Atiyah-Singer index theorem Topology 1986 111 117

[21] Gilkey, Peter B. Invariance theory, the heat equation, and the Atiyah-Singer index theorem 1984

[22] Lawson, H. Blaine, Jr., Michelsohn, Marie-Louise Spin geometry 1989

[23] Lusztig, Gheorghe Novikov’s higher signature and families of elliptic operators J. Differential Geometry 1972 229 256

[24] Mazzeo, Rafe R., Melrose, Richard B. The adiabatic limit, Hodge cohomology and Leray’s spectral sequence for a fibration J. Differential Geom. 1990 185 213

[25] Melrose, Richard B. Transformation of boundary problems Acta Math. 1981 149 236

[26] Mã¼Ller, Werner Signature defects of cusps of Hilbert modular varieties and values of 𝐿-series at 𝑠 J. Differential Geom. 1984 55 119

[27] Mã¼Ller, Werner Manifolds with cusps of rank one 1987

[28] Quillen, Daniel Superconnections and the Chern character Topology 1985 89 95

[29] Reed, Michael, Simon, Barry Methods of modern mathematical physics. I. Functional analysis 1972

[30] Simon, Barry Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions Ann. Inst. H. Poincaré Sect. A (N.S.) 1983 295 308

[31] Singer, I. M. The 𝜂-invariant and the index 1987 239 258

[32] Stern, Mark 𝐿²-index theorems on locally symmetric spaces Invent. Math. 1989 231 282

[33] Witten, Edward Global gravitational anomalies Comm. Math. Phys. 1985 197 229

Cité par Sources :