On the nonlinear convexity theorem of Kostant
Journal of the American Mathematical Society, Tome 04 (1991) no. 2, pp. 349-363

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1991_1086967_2,
     author = {Lu, Jiang-Hua and Ratiu, Tudor},
     title = {On the nonlinear convexity theorem of {Kostant}},
     journal = {Journal of the American Mathematical Society},
     pages = {349--363},
     publisher = {mathdoc},
     volume = {04},
     number = {2},
     year = {1991},
     doi = {10.1090/S0894-0347-1991-1086967-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1086967-2/}
}
TY  - JOUR
AU  - Lu, Jiang-Hua
AU  - Ratiu, Tudor
TI  - On the nonlinear convexity theorem of Kostant
JO  - Journal of the American Mathematical Society
PY  - 1991
SP  - 349
EP  - 363
VL  - 04
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1086967-2/
DO  - 10.1090/S0894-0347-1991-1086967-2
ID  - 10_1090_S0894_0347_1991_1086967_2
ER  - 
%0 Journal Article
%A Lu, Jiang-Hua
%A Ratiu, Tudor
%T On the nonlinear convexity theorem of Kostant
%J Journal of the American Mathematical Society
%D 1991
%P 349-363
%V 04
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1086967-2/
%R 10.1090/S0894-0347-1991-1086967-2
%F 10_1090_S0894_0347_1991_1086967_2
Lu, Jiang-Hua; Ratiu, Tudor. On the nonlinear convexity theorem of Kostant. Journal of the American Mathematical Society, Tome 04 (1991) no. 2, pp. 349-363. doi: 10.1090/S0894-0347-1991-1086967-2

[1] Atiyah, M. F. Convexity and commuting Hamiltonians Bull. London Math. Soc. 1982 1 15

[2] Conn, Jack F. Normal forms for smooth Poisson structures Ann. of Math. (2) 1985 565 593

[3] Dazord, Pierre, Sondaz, D. Groupes de Poisson affines 1991 99 128

[4] Drinfel′D, V. G. Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations Dokl. Akad. Nauk SSSR 1983 285 287

[5] Duistermaat, J. J. Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution Trans. Amer. Math. Soc. 1983 417 429

[6] Duistermaat, J. J. On the similarity between the Iwasawa projection and the diagonal part Mém. Soc. Math. France (N.S.) 1984 129 138

[7] Guillemin, V., Sternberg, S. Convexity properties of the moment mapping Invent. Math. 1982 491 513

[8] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces 1978

[9] Horn, Alfred Doubly stochastic matrices and the diagonal of a rotation matrix Amer. J. Math. 1954 620 630

[10] Kosmann-Schwarzbach, Y., Magri, F. Poisson-Lie groups and complete integrability. I. Drinfel′d bialgebras, dual extensions and their canonical representations Ann. Inst. H. Poincaré Phys. Théor. 1988 433 460

[11] Kostant, Bertram On convexity, the Weyl group and the Iwasawa decomposition Ann. Sci. École Norm. Sup. (4) 1973

[12] Koszul, Jean-Louis Crochet de Schouten-Nijenhuis et cohomologie Astérisque 1985 257 271

[13] Lu, Jiang-Hua, Weinstein, Alan Poisson Lie groups, dressing transformations, and Bruhat decompositions J. Differential Geom. 1990 501 526

[14] Lu, Jiang-Hua Momentum mappings and reduction of Poisson actions 1991 209 226

[15] Semenov-Tian-Shansky, Michael A. Dressing transformations and Poisson group actions Publ. Res. Inst. Math. Sci. 1985 1237 1260

[16] Weinstein, Alan The local structure of Poisson manifolds J. Differential Geom. 1983 523 557

[17] Woronowicz, S. L. Compact matrix pseudogroups Comm. Math. Phys. 1987 613 665

Cité par Sources :