The square-free sieve and the rank of elliptic curves
Journal of the American Mathematical Society, Tome 04 (1991) no. 1, pp. 1-23

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1991_1080648_7,
     author = {Gouv\~A{\textordfeminine}a, F. and Mazur, B.},
     title = {The square-free sieve and the rank of elliptic curves},
     journal = {Journal of the American Mathematical Society},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {04},
     number = {1},
     year = {1991},
     doi = {10.1090/S0894-0347-1991-1080648-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1080648-7/}
}
TY  - JOUR
AU  - Gouvêa, F.
AU  - Mazur, B.
TI  - The square-free sieve and the rank of elliptic curves
JO  - Journal of the American Mathematical Society
PY  - 1991
SP  - 1
EP  - 23
VL  - 04
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1080648-7/
DO  - 10.1090/S0894-0347-1991-1080648-7
ID  - 10_1090_S0894_0347_1991_1080648_7
ER  - 
%0 Journal Article
%A Gouvêa, F.
%A Mazur, B.
%T The square-free sieve and the rank of elliptic curves
%J Journal of the American Mathematical Society
%D 1991
%P 1-23
%V 04
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1080648-7/
%R 10.1090/S0894-0347-1991-1080648-7
%F 10_1090_S0894_0347_1991_1080648_7
Gouvêa, F.; Mazur, B. The square-free sieve and the rank of elliptic curves. Journal of the American Mathematical Society, Tome 04 (1991) no. 1, pp. 1-23. doi: 10.1090/S0894-0347-1991-1080648-7

[1] Brumer, Armand, Mcguinness, Oisã­N The behavior of the Mordell-Weil group of elliptic curves Bull. Amer. Math. Soc. (N.S.) 1990 375 382

[2] Bump, Daniel, Friedberg, Solomon, Hoffstein, Jeffrey Nonvanishing theorems for 𝐿-functions of modular forms and their derivatives Invent. Math. 1990 543 618

[3] Erdã¶S, P. On the sum ∑^{𝑥}_{𝑘 J. London Math. Soc. 1952 7 15

[4] Goldfeld, Dorian Conjectures on elliptic curves over quadratic fields 1979 108 118

[5] Gouvãªa, Fernando Q. The square-free sieve over number fields J. Number Theory 1993 109 122

[6] Greaves, George Power-free values of binary forms Quart. J. Math. Oxford Ser. (2) 1992 45 65

[7] Hooley, C. Applications of sieve methods to the theory of numbers 1976

[8] Hardy, G. H., Wright, E. M. An introduction to the theory of numbers 1979

[9] Igusa, Jun-Ichi Forms of higher degree 1978

[10] Kolyvagin, V. A. Euler systems 1990 435 483

[11] Kolyvagin, V. A. Finiteness of 𝐸(𝑄) and SH(𝐸,𝑄) for a subclass of Weil curves Izv. Akad. Nauk SSSR Ser. Mat. 1988

[12] Koblitz, Neal Introduction to elliptic curves and modular forms 1984

[13] Mazur, B. Rational isogenies of prime degree (with an appendix by D. Goldfeld) Invent. Math. 1978 129 162

[14] Serre, Jean-Pierre Propriétés galoisiennes des points d’ordre fini des courbes elliptiques Invent. Math. 1972 259 331

[15] Shimura, Goro On modular forms of half integral weight Ann. of Math. (2) 1973 440 481

[16] Tunnell, J. B. A classical Diophantine problem and modular forms of weight 3/2 Invent. Math. 1983 323 334

[17] Waldspurger, J.-L. Sur les coefficients de Fourier des formes modulaires de poids demi-entier J. Math. Pures Appl. (9) 1981 375 484

[18] Zagier, D., Kramarz, G. Numerical investigations related to the 𝐿-series of certain elliptic curves J. Indian Math. Soc. (N.S.) 1987

Cité par Sources :