The Π¹â-singleton conjecture
Journal of the American Mathematical Society, Tome 03 (1990) no. 4, pp. 771-791
Voir la notice de l'article provenant de la source American Mathematical Society
The real ${0^\# } = {\operatorname {Thy}}\left \langle {L,\varepsilon ,{\aleph _1},{\aleph _2}, \ldots } \right \rangle$ is a natural example of a nonconstructible definable real. Moreover ${0^\# }$ has a definition that is absolute: for some formula $\phi (x),{0^\# }$ is the unique real $R$ such that $L[R] \vDash \phi (R)$. Solovay conjectured that there is a real $R$ such that $0{ _L}R{ _L}{0^\# }$ and $R$ also has such an absolute definition. We prove his conjecture by constructing a $\Pi _2^1$-singleton $R$, $0{ _L}R{ _L}{0^\# }$. A variant of our construction produces a countable nonempty $\Pi _2^1$ set of reals not containing a $\Pi _2^1$-singleton. The latter result answers a question of Kechris.
@article{10_1090_S0894_0347_1990_1071116_6,
author = {Friedman, Sy D.},
title = {The {\^I~\^A{\textonesuperior}\^a-singleton} conjecture},
journal = {Journal of the American Mathematical Society},
pages = {771--791},
publisher = {mathdoc},
volume = {03},
number = {4},
year = {1990},
doi = {10.1090/S0894-0347-1990-1071116-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1071116-6/}
}
TY - JOUR AU - Friedman, Sy D. TI - The Π¹â-singleton conjecture JO - Journal of the American Mathematical Society PY - 1990 SP - 771 EP - 791 VL - 03 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1071116-6/ DO - 10.1090/S0894-0347-1990-1071116-6 ID - 10_1090_S0894_0347_1990_1071116_6 ER -
%0 Journal Article %A Friedman, Sy D. %T The Π¹â-singleton conjecture %J Journal of the American Mathematical Society %D 1990 %P 771-791 %V 03 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1071116-6/ %R 10.1090/S0894-0347-1990-1071116-6 %F 10_1090_S0894_0347_1990_1071116_6
Friedman, Sy D. The Π¹â-singleton conjecture. Journal of the American Mathematical Society, Tome 03 (1990) no. 4, pp. 771-791. doi: 10.1090/S0894-0347-1990-1071116-6
[1] , , Coding the universe 1982
[2] A very absolute Π¹â real singleton Ann. Math. Logic 1982
[3] An immune partition of the ordinals 1985 141 147
[4] Minimal coding Ann. Pure Appl. Logic 1989 233 297
[5] , Some applications of almost disjoint sets 1970 84 104
Cité par Sources :