Lattices of minimal covolume in 𝑆𝐿₂: a non-Archimedean analogue of Siegel’s theorem 𝜇≥𝜋/21
Journal of the American Mathematical Society, Tome 03 (1990) no. 4, pp. 961-975

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1990_1070003_7,
     author = {Lubotzky, Alexander},
     title = {Lattices of minimal covolume in {\dh}‘†{\dh}{\textquestiondown}\^a‚‚: a {non-Archimedean} analogue of {Siegel\^a€™s} theorem {\dh}œ‡\^a‰{\textyen}{\dh}œ‹/21},
     journal = {Journal of the American Mathematical Society},
     pages = {961--975},
     publisher = {mathdoc},
     volume = {03},
     number = {4},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1070003-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1070003-7/}
}
TY  - JOUR
AU  - Lubotzky, Alexander
TI  - Lattices of minimal covolume in 𝑆𝐿₂: a non-Archimedean analogue of Siegel’s theorem 𝜇≥𝜋/21
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 961
EP  - 975
VL  - 03
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1070003-7/
DO  - 10.1090/S0894-0347-1990-1070003-7
ID  - 10_1090_S0894_0347_1990_1070003_7
ER  - 
%0 Journal Article
%A Lubotzky, Alexander
%T Lattices of minimal covolume in 𝑆𝐿₂: a non-Archimedean analogue of Siegel’s theorem 𝜇≥𝜋/21
%J Journal of the American Mathematical Society
%D 1990
%P 961-975
%V 03
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1070003-7/
%R 10.1090/S0894-0347-1990-1070003-7
%F 10_1090_S0894_0347_1990_1070003_7
Lubotzky, Alexander. Lattices of minimal covolume in 𝑆𝐿₂: a non-Archimedean analogue of Siegel’s theorem 𝜇≥𝜋/21. Journal of the American Mathematical Society, Tome 03 (1990) no. 4, pp. 961-975. doi: 10.1090/S0894-0347-1990-1070003-7

[1] Bass, Hyman Covering theory for graphs of groups J. Pure Appl. Algebra 1993 3 47

[2] Bass, Hyman, Kulkarni, Ravi Uniform tree lattices J. Amer. Math. Soc. 1990 843 902

[3] Borel, A. Commensurability classes and volumes of hyperbolic 3-manifolds Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1981 1 33

[4] Borel, Armand, Prasad, Gopal Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups Inst. Hautes Études Sci. Publ. Math. 1989 119 171

[5] Feit, Walter On finite linear groups J. Algebra 1967 378 400

[6] Feit, Walter Characters of finite groups 1967

[7] Gerritzen, Lothar, Van Der Put, Marius Schottky groups and Mumford curves 1980

[8] Greenberg, L. Finiteness theorems for Fuchsian and Kleinian groups 1977 199 257

[9] Lang, Serge Introduction to modular forms 1976

[10] Lubotzky, Alexander Trees and discrete subgroups of Lie groups over local fields Bull. Amer. Math. Soc. (N.S.) 1989 27 30

[11] Meyerhoff, Robert The cusped hyperbolic 3-orbifold of minimum volume Bull. Amer. Math. Soc. (N.S.) 1985 154 156

[12] Margulis, G. A., Rohlfs, J. On the proportionality of covolumes of discrete subgroups Math. Ann. 1986 197 205

[13] Prasad, Gopal Volumes of 𝑆-arithmetic quotients of semi-simple groups Inst. Hautes Études Sci. Publ. Math. 1989 91 117

[14] Raghunathan, M. S. Discrete subgroups of algebraic groups over local fields of positive characteristics Proc. Indian Acad. Sci. Math. Sci. 1989 127 146

[15] Serre, Jean-Pierre Lie algebras and Lie groups 1965

[16] Serre, Jean-Pierre Trees 1980

[17] Serre, Jean-Pierre Linear representations of finite groups 1977

[18] Siegel, Carl Ludwig Some remarks on discontinuous groups Ann. of Math. (2) 1945 708 718

[19] Suzuki, Michio Gun ron. Vol. 1 1977

[20] Weil, Andr㩠On the analogue of the modular group in characteristic 𝑝 1970 211 223

Cité par Sources :