A Glimm-Effros dichotomy for Borel equivalence relations
Journal of the American Mathematical Society, Tome 03 (1990) no. 4, pp. 903-928

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1990_1057041_5,
     author = {Harrington, L. A. and Kechris, A. S. and Louveau, A.},
     title = {A {Glimm-Effros} dichotomy for {Borel} equivalence relations},
     journal = {Journal of the American Mathematical Society},
     pages = {903--928},
     publisher = {mathdoc},
     volume = {03},
     number = {4},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1057041-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1057041-5/}
}
TY  - JOUR
AU  - Harrington, L. A.
AU  - Kechris, A. S.
AU  - Louveau, A.
TI  - A Glimm-Effros dichotomy for Borel equivalence relations
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 903
EP  - 928
VL  - 03
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1057041-5/
DO  - 10.1090/S0894-0347-1990-1057041-5
ID  - 10_1090_S0894_0347_1990_1057041_5
ER  - 
%0 Journal Article
%A Harrington, L. A.
%A Kechris, A. S.
%A Louveau, A.
%T A Glimm-Effros dichotomy for Borel equivalence relations
%J Journal of the American Mathematical Society
%D 1990
%P 903-928
%V 03
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1057041-5/
%R 10.1090/S0894-0347-1990-1057041-5
%F 10_1090_S0894_0347_1990_1057041_5
Harrington, L. A.; Kechris, A. S.; Louveau, A. A Glimm-Effros dichotomy for Borel equivalence relations. Journal of the American Mathematical Society, Tome 03 (1990) no. 4, pp. 903-928. doi: 10.1090/S0894-0347-1990-1057041-5

[1] Burgess, John P. Equivalences generated by families of Borel sets Proc. Amer. Math. Soc. 1978 323 326

[2] Burgess, John P. A selection theorem for group actions Pacific J. Math. 1979 333 336

[3] Dixmier, Jacques 𝐶*-algebras 1977

[4] Effros, Edward G. Transformation groups and 𝐶*-algebras Ann. of Math. (2) 1965 38 55

[5] Effros, Edward G. Polish transformation groups and classification problems 1981 217 227

[6] Glimm, James Type I 𝐶*-algebras Ann. of Math. (2) 1961 572 612

[7] Glimm, James Locally compact transformation groups Trans. Amer. Math. Soc. 1961 124 138

[8] Godefroy, Gilles Some remarks on Suslin sections Studia Math. 1986 159 167

[9] Harrington, Leo, Marker, David, Shelah, Saharon Borel orderings Trans. Amer. Math. Soc. 1988 293 302

[10] Katznelson, Yitzhak, Weiss, Benjamin The construction of quasi-invariant measures Israel J. Math. 1972 1 4

[11] Kechris, Alexander S. Amenable equivalence relations and Turing degrees J. Symbolic Logic 1991 182 194

[12] Krieger, Wolfgang On quasi-invariant measures in uniquely ergodic systems Invent. Math. 1971 184 196

[13] Krieger, Wolfgang On Borel automorphisms and their quasi-invariant measures Math. Z. 1976 19 24

[14] Kuratowski, K. Topology. Vol. I 1966

[15] Louveau, Alain Two results on Borel orders J. Symbolic Logic 1989 865 874

[16] Louveau, Alain, Saint-Raymond, Jean On the quasi-ordering of Borel linear orders under embeddability J. Symbolic Logic 1990 537 560

[17] Martin, Donald A. Infinite games 1980 269 273

[18] Moschovakis, Yiannis N. Descriptive set theory 1980

[19] Shelah, Saharon, Weiss, Benjamin Measurable recurrence and quasi-invariant measures Israel J. Math. 1982 154 160

[20] Silver, Jack H. Counting the number of equivalence classes of Borel and coanalytic equivalence relations Ann. Math. Logic 1980 1 28

[21] Weiss, Benjamin Measurable dynamics 1984 395 421

[22] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

Cité par Sources :