A pinching theorem for homotopy spheres
Journal of the American Mathematical Society, Tome 03 (1990) no. 3, pp. 671-677

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1990_1049696_6,
     author = {Grove, Karsten and Petersen, Peter},
     title = {A pinching theorem for homotopy spheres},
     journal = {Journal of the American Mathematical Society},
     pages = {671--677},
     publisher = {mathdoc},
     volume = {03},
     number = {3},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1049696-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1049696-6/}
}
TY  - JOUR
AU  - Grove, Karsten
AU  - Petersen, Peter
TI  - A pinching theorem for homotopy spheres
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 671
EP  - 677
VL  - 03
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1049696-6/
DO  - 10.1090/S0894-0347-1990-1049696-6
ID  - 10_1090_S0894_0347_1990_1049696_6
ER  - 
%0 Journal Article
%A Grove, Karsten
%A Petersen, Peter
%T A pinching theorem for homotopy spheres
%J Journal of the American Mathematical Society
%D 1990
%P 671-677
%V 03
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1049696-6/
%R 10.1090/S0894-0347-1990-1049696-6
%F 10_1090_S0894_0347_1990_1049696_6
Grove, Karsten; Petersen, Peter. A pinching theorem for homotopy spheres. Journal of the American Mathematical Society, Tome 03 (1990) no. 3, pp. 671-677. doi: 10.1090/S0894-0347-1990-1049696-6

[1] Abresch, Uwe, Gromoll, Detlef On complete manifolds with nonnegative Ricci curvature J. Amer. Math. Soc. 1990 355 374

[2] Anderson, Michael T. Metrics of positive Ricci curvature with large diameter Manuscripta Math. 1990 405 415

[3] Besse, Arthur L. Manifolds all of whose geodesics are closed 1978

[4] Eschenburg, J.-H. Diameter, volume, and topology for positive Ricci curvature J. Differential Geom. 1991 743 747

[5] Freedman, Michael Hartley The topology of four-dimensional manifolds J. Differential Geometry 1982 357 453

[6] Gromov, Michael Curvature, diameter and Betti numbers Comment. Math. Helv. 1981 179 195

[7] Grove, Karsten Metric differential geometry 1987 171 227

[8] Grove, Karsten, Petersen, Peter, V Bounding homotopy types by geometry Ann. of Math. (2) 1988 195 206

[9] Grove, Karsten, Petersen, Peter Manifolds near the boundary of existence J. Differential Geom. 1991 379 394

[10] Grove, K., Petersen, P., V, Wu, J. Y. Controlled topology in geometry Bull. Amer. Math. Soc. (N.S.) 1989 181 183

[11] Grove, Karsten, Shiohama, Katsuhiro A generalized sphere theorem Ann. of Math. (2) 1977 201 211

[12] Hamilton, Richard S. Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306

[13] Itokawa, Yoe The topology of certain Riemannian manifolds with positive Ricci curvature J. Differential Geometry 1983 151 155

[14] Otsu, Yukio On manifolds of positive Ricci curvature with large diameter Math. Z. 1991 255 264

[15] Petersen, Peter, V A finiteness theorem for metric spaces J. Differential Geom. 1990 387 395

[16] Shiohama, Katsuhiro A sphere theorem for manifolds of positive Ricci curvature Trans. Amer. Math. Soc. 1983 811 819

[17] Wu, Jyh Yang A diameter pinching sphere theorem for positive Ricci curvature Proc. Amer. Math. Soc. 1989 797 802

Cité par Sources :