The intrinsic spread of a configuration in 𝑅^{𝑑}
Journal of the American Mathematical Society, Tome 03 (1990) no. 3, pp. 639-651

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1990_1046181_2,
     author = {Goodman, Jacob E. and Pollack, Richard and Sturmfels, Bernd},
     title = {The intrinsic spread of a configuration in {\dh}‘…^{{\dh}‘‘}},
     journal = {Journal of the American Mathematical Society},
     pages = {639--651},
     publisher = {mathdoc},
     volume = {03},
     number = {3},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1046181-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1046181-2/}
}
TY  - JOUR
AU  - Goodman, Jacob E.
AU  - Pollack, Richard
AU  - Sturmfels, Bernd
TI  - The intrinsic spread of a configuration in 𝑅^{𝑑}
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 639
EP  - 651
VL  - 03
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1046181-2/
DO  - 10.1090/S0894-0347-1990-1046181-2
ID  - 10_1090_S0894_0347_1990_1046181_2
ER  - 
%0 Journal Article
%A Goodman, Jacob E.
%A Pollack, Richard
%A Sturmfels, Bernd
%T The intrinsic spread of a configuration in 𝑅^{𝑑}
%J Journal of the American Mathematical Society
%D 1990
%P 639-651
%V 03
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1046181-2/
%R 10.1090/S0894-0347-1990-1046181-2
%F 10_1090_S0894_0347_1990_1046181_2
Goodman, Jacob E.; Pollack, Richard; Sturmfels, Bernd. The intrinsic spread of a configuration in 𝑅^{𝑑}. Journal of the American Mathematical Society, Tome 03 (1990) no. 3, pp. 639-651. doi: 10.1090/S0894-0347-1990-1046181-2

[1] Bienstock, Daniel Some provably hard crossing number problems Discrete Comput. Geom. 1991 443 459

[2] Bland, Robert G., Las Vergnas, Michel Orientability of matroids J. Combinatorial Theory Ser. B 1978 94 123

[3] Bokowski, Jã¼Rgen, Sturmfels, Bernd Computational synthetic geometry 1989

[4] Chazelle, Bernard An improved algorithm for the fixed-radius neighbor problem Inform. Process. Lett. 1983 193 198

[5] Edelsbrunner, Herbert Algorithms in combinatorial geometry 1987

[6] Folkman, Jon, Lawrence, Jim Oriented matroids J. Combin. Theory Ser. B 1978 199 236

[7] Goodman, Jacob E., Pollack, Richard Multidimensional sorting SIAM J. Comput. 1983 484 507

[8] Goodman, Jacob E., Pollack, Richard Upper bounds for configurations and polytopes in 𝑅^{𝑑} Discrete Comput. Geom. 1986 219 227

[9] Grigor′Ev, D. Yu., Vorobjov, N. N., Jr. Solving systems of polynomial inequalities in subexponential time J. Symbolic Comput. 1988 37 64

[10] Jaggi, Beat, Mani-Levitska, Peter, Sturmfels, Bernd, White, Neil Uniform oriented matroids without the isotopy property Discrete Comput. Geom. 1989 97 100

[11] Komlã³S, Jã¡Nos, Pintz, Jã¡Nos, Szemerã©Di, Endre A lower bound for Heilbronn’s problem J. London Math. Soc. (2) 1982 13 24

[12] Las Vergnas, Michel Order properties of lines in the plane and a conjecture of G. Ringel J. Combin. Theory Ser. B 1986 246 249

[13] Roth, K. F. Developments in Heilbronn’s triangle problem Advances in Math. 1976 364 385

[14] Sturmfels, Bernd Some applications of affine Gale diagrams to polytopes with few vertices SIAM J. Discrete Math. 1988 121 133

Cité par Sources :