Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1990_1046181_2,
author = {Goodman, Jacob E. and Pollack, Richard and Sturmfels, Bernd},
title = {The intrinsic spread of a configuration in {\dh}
^{{\dh}}},
journal = {Journal of the American Mathematical Society},
pages = {639--651},
publisher = {mathdoc},
volume = {03},
number = {3},
year = {1990},
doi = {10.1090/S0894-0347-1990-1046181-2},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1046181-2/}
}
TY - JOUR
AU - Goodman, Jacob E.
AU - Pollack, Richard
AU - Sturmfels, Bernd
TI - The intrinsic spread of a configuration in ð
^{ð}
JO - Journal of the American Mathematical Society
PY - 1990
SP - 639
EP - 651
VL - 03
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1046181-2/
DO - 10.1090/S0894-0347-1990-1046181-2
ID - 10_1090_S0894_0347_1990_1046181_2
ER -
%0 Journal Article
%A Goodman, Jacob E.
%A Pollack, Richard
%A Sturmfels, Bernd
%T The intrinsic spread of a configuration in ð
^{ð}
%J Journal of the American Mathematical Society
%D 1990
%P 639-651
%V 03
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1046181-2/
%R 10.1090/S0894-0347-1990-1046181-2
%F 10_1090_S0894_0347_1990_1046181_2
Goodman, Jacob E.; Pollack, Richard; Sturmfels, Bernd. The intrinsic spread of a configuration in ð
^{ð}. Journal of the American Mathematical Society, Tome 03 (1990) no. 3, pp. 639-651. doi: 10.1090/S0894-0347-1990-1046181-2
[1] Some provably hard crossing number problems Discrete Comput. Geom. 1991 443 459
[2] , Orientability of matroids J. Combinatorial Theory Ser. B 1978 94 123
[3] , Computational synthetic geometry 1989
[4] An improved algorithm for the fixed-radius neighbor problem Inform. Process. Lett. 1983 193 198
[5] Algorithms in combinatorial geometry 1987
[6] , Oriented matroids J. Combin. Theory Ser. B 1978 199 236
[7] , Multidimensional sorting SIAM J. Comput. 1983 484 507
[8] , Upper bounds for configurations and polytopes in ð ^{ð} Discrete Comput. Geom. 1986 219 227
[9] , Solving systems of polynomial inequalities in subexponential time J. Symbolic Comput. 1988 37 64
[10] , , , Uniform oriented matroids without the isotopy property Discrete Comput. Geom. 1989 97 100
[11] , , A lower bound for Heilbronnâs problem J. London Math. Soc. (2) 1982 13 24
[12] Order properties of lines in the plane and a conjecture of G. Ringel J. Combin. Theory Ser. B 1986 246 249
[13] Developments in Heilbronnâs triangle problem Advances in Math. 1976 364 385
[14] Some applications of affine Gale diagrams to polytopes with few vertices SIAM J. Discrete Math. 1988 121 133
Cité par Sources :