Harmonic bundles on noncompact curves
Journal of the American Mathematical Society, Tome 03 (1990) no. 3, pp. 713-770

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1990_1040197_8,
     author = {Simpson, Carlos T.},
     title = {Harmonic bundles on noncompact curves},
     journal = {Journal of the American Mathematical Society},
     pages = {713--770},
     publisher = {mathdoc},
     volume = {03},
     number = {3},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1040197-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1040197-8/}
}
TY  - JOUR
AU  - Simpson, Carlos T.
TI  - Harmonic bundles on noncompact curves
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 713
EP  - 770
VL  - 03
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1040197-8/
DO  - 10.1090/S0894-0347-1990-1040197-8
ID  - 10_1090_S0894_0347_1990_1040197_8
ER  - 
%0 Journal Article
%A Simpson, Carlos T.
%T Harmonic bundles on noncompact curves
%J Journal of the American Mathematical Society
%D 1990
%P 713-770
%V 03
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1040197-8/
%R 10.1090/S0894-0347-1990-1040197-8
%F 10_1090_S0894_0347_1990_1040197_8
Simpson, Carlos T. Harmonic bundles on noncompact curves. Journal of the American Mathematical Society, Tome 03 (1990) no. 3, pp. 713-770. doi: 10.1090/S0894-0347-1990-1040197-8

[1] Ahlfors, Lars V. An extension of Schwarz’s lemma Trans. Amer. Math. Soc. 1938 359 364

[2] Corlette, Kevin Flat 𝐺-bundles with canonical metrics J. Differential Geom. 1988 361 382

[3] Cornalba, Maurizio, Griffiths, Phillip Analytic cycles and vector bundles on non-compact algebraic varieties Invent. Math. 1975 1 106

[4] Deligne, Pierre Équations différentielles à points singuliers réguliers 1970

[5] Donaldson, S. K. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles Proc. London Math. Soc. (3) 1985 1 26

[6] Donaldson, S. K. Infinite determinants, stable bundles and curvature Duke Math. J. 1987 231 247

[7] Donaldson, S. K. Twisted harmonic maps and the self-duality equations Proc. London Math. Soc. (3) 1987 127 131

[8] Eells, James, Jr., Sampson, J. H. Harmonic mappings of Riemannian manifolds Amer. J. Math. 1964 109 160

[9] Topics in transcendental algebraic geometry 1984

[10] Griffiths, Phillip, Schmid, Wilfried Locally homogeneous complex manifolds Acta Math. 1969 253 302

[11] Hamilton, Richard S. Harmonic maps of manifolds with boundary 1975

[12] Hitchin, N. J. The self-duality equations on a Riemann surface Proc. London Math. Soc. (3) 1987 59 126

[13] Kashiwara, M. Vanishing cycle sheaves and holonomic systems of differential equations 1983 134 142

[14] Malgrange, B. Polynômes de Bernstein-Sato et cohomologie évanescente 1983 243 267

[15] Mehta, V. B., Seshadri, C. S. Moduli of vector bundles on curves with parabolic structures Math. Ann. 1980 205 239

[16] Narasimhan, M. S., Seshadri, C. S. Stable and unitary vector bundles on a compact Riemann surface Ann. of Math. (2) 1965 540 567

[17] Schmid, Wilfried Variation of Hodge structure: the singularities of the period mapping Invent. Math. 1973 211 319

[18] Simpson, Carlos T. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization J. Amer. Math. Soc. 1988 867 918

[19] Uhlenbeck, K., Yau, S.-T. On the existence of Hermitian-Yang-Mills connections in stable vector bundles Comm. Pure Appl. Math. 1986

[20] Zucker, Steven Hodge theory with degenerating coefficients. 𝐿₂ cohomology in the Poincaré metric Ann. of Math. (2) 1979 415 476

[21] Esnault, Hã©Lã¨Ne, Viehweg, Eckart Logarithmic de Rham complexes and vanishing theorems Invent. Math. 1986 161 194

Cité par Sources :