Complete Kähler manifolds with zero Ricci curvature. I
Journal of the American Mathematical Society, Tome 03 (1990) no. 3, pp. 579-609

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1990_1040196_6,
     author = {Tian, G. and Yau, Shing-Tung},
     title = {Complete {K\~A{\textcurrency}hler} manifolds with zero {Ricci} curvature. {I}},
     journal = {Journal of the American Mathematical Society},
     pages = {579--609},
     publisher = {mathdoc},
     volume = {03},
     number = {3},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1040196-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1040196-6/}
}
TY  - JOUR
AU  - Tian, G.
AU  - Yau, Shing-Tung
TI  - Complete Kähler manifolds with zero Ricci curvature. I
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 579
EP  - 609
VL  - 03
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1040196-6/
DO  - 10.1090/S0894-0347-1990-1040196-6
ID  - 10_1090_S0894_0347_1990_1040196_6
ER  - 
%0 Journal Article
%A Tian, G.
%A Yau, Shing-Tung
%T Complete Kähler manifolds with zero Ricci curvature. I
%J Journal of the American Mathematical Society
%D 1990
%P 579-609
%V 03
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1040196-6/
%R 10.1090/S0894-0347-1990-1040196-6
%F 10_1090_S0894_0347_1990_1040196_6
Tian, G.; Yau, Shing-Tung. Complete Kähler manifolds with zero Ricci curvature. I. Journal of the American Mathematical Society, Tome 03 (1990) no. 3, pp. 579-609. doi: 10.1090/S0894-0347-1990-1040196-6

[1] Bishop, Richard L., Crittenden, Richard J. Geometry of manifolds 1964

[2] Barth, W., Peters, C., Van De Ven, A. Compact complex surfaces 1984

[3] Cheng, S. Y., Yau, S.-T. Inequality between Chern numbers of singular Kähler surfaces and characterization of orbit space of discrete group of 𝑆𝑈(2,1) 1986 31 44

[4] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1977

[5] Greene, R. E., Wu, H. Function theory on manifolds which possess a pole 1979

[6] Hartshorne, Robin Ample vector bundles Inst. Hautes Études Sci. Publ. Math. 1966 63 94

[7] Jost, Jã¼Rgen Harmonic mappings between Riemannian manifolds 1984

[8] Milnor, J. A note on curvature and fundamental group J. Differential Geometry 1968 1 7

[9] Siu, Yum Tong, Yau, Shing Tung Complete Kähler manifolds with nonpositive curvature of faster than quadratic decay Ann. of Math. (2) 1977 225 264

[10] Tian, G., Yau, S.-T. Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry 1987 574 628

[11] Wu, H. Manifolds of partially positive curvature Indiana Univ. Math. J. 1987 525 548

[12] Yau, Shing Tung Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold Ann. Sci. École Norm. Sup. (4) 1975 487 507

[13] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411

[14] Yau, Shing Tung A general Schwarz lemma for Kähler manifolds Amer. J. Math. 1978 197 203

Cité par Sources :