Nodal sets for eigenfunctions of the Laplacian on surfaces
Journal of the American Mathematical Society, Tome 03 (1990) no. 2, pp. 333-353 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

@article{10_1090_S0894_0347_1990_1035413_2,
     author = {Donnelly, Harold and Fefferman, Charles},
     title = {Nodal sets for eigenfunctions of the {Laplacian} on surfaces},
     journal = {Journal of the American Mathematical Society},
     pages = {333--353},
     year = {1990},
     volume = {03},
     number = {2},
     doi = {10.1090/S0894-0347-1990-1035413-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1035413-2/}
}
TY  - JOUR
AU  - Donnelly, Harold
AU  - Fefferman, Charles
TI  - Nodal sets for eigenfunctions of the Laplacian on surfaces
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 333
EP  - 353
VL  - 03
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1035413-2/
DO  - 10.1090/S0894-0347-1990-1035413-2
ID  - 10_1090_S0894_0347_1990_1035413_2
ER  - 
%0 Journal Article
%A Donnelly, Harold
%A Fefferman, Charles
%T Nodal sets for eigenfunctions of the Laplacian on surfaces
%J Journal of the American Mathematical Society
%D 1990
%P 333-353
%V 03
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1035413-2/
%R 10.1090/S0894-0347-1990-1035413-2
%F 10_1090_S0894_0347_1990_1035413_2
Donnelly, Harold; Fefferman, Charles. Nodal sets for eigenfunctions of the Laplacian on surfaces. Journal of the American Mathematical Society, Tome 03 (1990) no. 2, pp. 333-353. doi: 10.1090/S0894-0347-1990-1035413-2

[1] Aronszajn, N. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order J. Math. Pures Appl. (9) 1957 235 249

[2] Brüning, Jochen Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators Math. Z. 1978 15 21

[3] Cheeger, Jeff Finiteness theorems for Riemannian manifolds Amer. J. Math. 1970 61 74

[4] Donnelly, Harold, Fefferman, Charles Nodal sets of eigenfunctions on Riemannian manifolds Invent. Math. 1988 161 183

[5] Donnelly, Harold, Fefferman, Charles Nodal sets of eigenfunctions: Riemannian manifolds with boundary 1990 251 262

[6] Goldberg, Samuel I. Curvature and homology 1962

[7] Hardt, Robert, Simon, Leon Nodal sets for solutions of elliptic equations J. Differential Geom. 1989 505 522

[8] Jost, Jürgen Harmonic maps between surfaces 1984

[9] Nadirashvili, N. S. The length of the nodal curve of an eigenfunction of the Laplace operator Uspekhi Mat. Nauk 1988 219 220

[10] Stein, Elias M. Singular integrals and differentiability properties of functions 1970

Cité par Sources :