On complete manifolds with nonnegative Ricci curvature
Journal of the American Mathematical Society, Tome 03 (1990) no. 2, pp. 355-374

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1990_1030656_6,
     author = {Abresch, Uwe and Gromoll, Detlef},
     title = {On complete manifolds with nonnegative {Ricci} curvature},
     journal = {Journal of the American Mathematical Society},
     pages = {355--374},
     publisher = {mathdoc},
     volume = {03},
     number = {2},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1030656-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1030656-6/}
}
TY  - JOUR
AU  - Abresch, Uwe
AU  - Gromoll, Detlef
TI  - On complete manifolds with nonnegative Ricci curvature
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 355
EP  - 374
VL  - 03
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1030656-6/
DO  - 10.1090/S0894-0347-1990-1030656-6
ID  - 10_1090_S0894_0347_1990_1030656_6
ER  - 
%0 Journal Article
%A Abresch, Uwe
%A Gromoll, Detlef
%T On complete manifolds with nonnegative Ricci curvature
%J Journal of the American Mathematical Society
%D 1990
%P 355-374
%V 03
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1030656-6/
%R 10.1090/S0894-0347-1990-1030656-6
%F 10_1090_S0894_0347_1990_1030656_6
Abresch, Uwe; Gromoll, Detlef. On complete manifolds with nonnegative Ricci curvature. Journal of the American Mathematical Society, Tome 03 (1990) no. 2, pp. 355-374. doi: 10.1090/S0894-0347-1990-1030656-6

[1] Abresch, Uwe Lower curvature bounds, Toponogov’s theorem, and bounded topology Ann. Sci. École Norm. Sup. (4) 1985 651 670

[2] Anderson, Michael T. On the topology of complete manifolds of nonnegative Ricci curvature Topology 1990 41 55

[3] Aloff, Simon, Wallach, Nolan R. An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures Bull. Amer. Math. Soc. 1975 93 97

[4] Bã©Rard-Bergery, Lionel Quelques exemples de variétés riemanniennes complètes non compactes à courbure de Ricci positive C. R. Acad. Sci. Paris Sér. I Math. 1986 159 161

[5] Bishop, Richard L., Crittenden, Richard J. Geometry of manifolds 1964

[6] Cheeger, Jeff, Ebin, David G. Comparison theorems in Riemannian geometry 1975

[7] Cheeger, Jeff, Gromoll, Detlef On the structure of complete manifolds of nonnegative curvature Ann. of Math. (2) 1972 413 443

[8] Cheeger, Jeff, Gromoll, Detlef The splitting theorem for manifolds of nonnegative Ricci curvature J. Differential Geometry 1971/72 119 128

[9] Cheeger, Jeff, Gromov, Mikhail, Taylor, Michael Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds J. Differential Geometry 1982 15 53

[10] Eschenburg, Jost, Heintze, Ernst An elementary proof of the Cheeger-Gromoll splitting theorem Ann. Global Anal. Geom. 1984 141 151

[11] Galloway, Gregory J. A generalization of the Cheeger-Gromoll splitting theorem Arch. Math. (Basel) 1986 372 375

[12] Gromoll, Detlef, Meyer, Wolfgang T. Examples of complete manifolds with positive Ricci curvature J. Differential Geom. 1985 195 211

[13] Gromov, Michael Curvature, diameter and Betti numbers Comment. Math. Helv. 1981 179 195

[14] Grove, Karsten Metric differential geometry 1987 171 227

[15] Grove, Karsten, Shiohama, Katsuhiro A generalized sphere theorem Ann. of Math. (2) 1977 201 211

[16] Lawson, H. Blaine, Jr. The unknottedness of minimal embeddings Invent. Math. 1970 183 187

[17] Milnor, J. A note on curvature and fundamental group J. Differential Geometry 1968 1 7

[18] Milman, Vitali D., Schechtman, Gideon Asymptotic theory of finite-dimensional normed spaces 1986

[19] Meeks, William, Iii, Simon, Leon, Yau, Shing Tung Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature Ann. of Math. (2) 1982 621 659

[20] Sha, Ji-Ping, Yang, Dagang Examples of manifolds of positive Ricci curvature J. Differential Geom. 1989 95 103

[21] Schoen, R., Yau, Shing Tung Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature Ann. of Math. (2) 1979 127 142

[22] Seminar on Differential Geometry 1982

[23] Yau, Shing Tung Some function-theoretic properties of complete Riemannian manifold and their applications to geometry Indiana Univ. Math. J. 1976 659 670

Cité par Sources :