Kategorie 𝒪, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe
Journal of the American Mathematical Society, Tome 03 (1990) no. 2, pp. 421-445

Voir la notice de l'article provenant de la source American Mathematical Society

We give a description of “the algebra of category $\mathcal {O}$” which is explicit enough to prove that the structure of the direct summands of $\mathcal {O}$ depends only on the integral Weyl group and the singularity of the central character, as well as to establish a weak version of the duality conjectures of Beilinson and Ginsburg [BGi]. As a byproduct we describe the intersection cohomology of Schubert varieties as modules over global cohomology ring. These are certain indecomposable graded self-dual modules over the coinvariant algebra of the Weyl group, via the Borel picture for the global cohomology ring of a flag manifold. They play a central role in this article and should have an interesting future.
@article{10_1090_S0894_0347_1990_1029692_5,
     author = {Soergel, Wolfgang},
     title = {Kategorie {\dh}’{\textordfeminine}, perverse {Garben} und {Moduln} {\~A{\textonequarter}ber} den {Koinvarianten} zur {Weylgruppe}},
     journal = {Journal of the American Mathematical Society},
     pages = {421--445},
     publisher = {mathdoc},
     volume = {03},
     number = {2},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1029692-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1029692-5/}
}
TY  - JOUR
AU  - Soergel, Wolfgang
TI  - Kategorie 𝒪, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 421
EP  - 445
VL  - 03
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1029692-5/
DO  - 10.1090/S0894-0347-1990-1029692-5
ID  - 10_1090_S0894_0347_1990_1029692_5
ER  - 
%0 Journal Article
%A Soergel, Wolfgang
%T Kategorie 𝒪, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe
%J Journal of the American Mathematical Society
%D 1990
%P 421-445
%V 03
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1029692-5/
%R 10.1090/S0894-0347-1990-1029692-5
%F 10_1090_S0894_0347_1990_1029692_5
Soergel, Wolfgang. Kategorie 𝒪, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. Journal of the American Mathematical Society, Tome 03 (1990) no. 2, pp. 421-445. doi: 10.1090/S0894-0347-1990-1029692-5

[1] Beä­Linson, A. A., Ginsburg, V. A., Schechtman, V. V. Koszul duality J. Geom. Phys. 1988 317 350

[2] Bernstein, J. N., Gel′Fand, S. I. Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras Compositio Math. 1980 245 285

[3] Bernå¡Teä­N, I. N., Gel′Fand, I. M., Gel′Fand, S. I. Schubert cells, and the cohomology of the spaces 𝐺/𝑃 Uspehi Mat. Nauk 1973 3 26

[4] Gabriel, Pierre Des catégories abéliennes Bull. Soc. Math. France 1962 323 448

[5] Gabber, O., Joseph, A. Towards the Kazhdan-Lusztig conjecture Ann. Sci. École Norm. Sup. (4) 1981 261 302

[6] Jantzen, Jens Carsten Einhüllende Algebren halbeinfacher Lie-Algebren 1983

[7] Joseph, A. Kostant’s problem, Goldie rank and the Gel′fand-Kirillov conjecture Invent. Math. 1980 191 213

[8] Kazhdan, David, Lusztig, George Representations of Coxeter groups and Hecke algebras Invent. Math. 1979 165 184

[9] Kazhdan, David, Lusztig, George Schubert varieties and Poincaré duality 1980 185 203

[10] Lusztig, George, Vogan, David A., Jr. Singularities of closures of 𝐾-orbits on flag manifolds Invent. Math. 1983 365 379

[11] Soergel, Wolfgang Universelle versus relative Einhüllende: Eine geometrische Untersuchung von Quotienten von universellen Einhüllenden halbeinfacher Lie-Algebren Math. Ann. 1989 177 198

[12] Brylinski, Jean-Luc (Co)-homologie d’intersection et faisceaux pervers 1982 129 157

Cité par Sources :