The classification of links up to link-homotopy
Journal of the American Mathematical Society, Tome 03 (1990) no. 2, pp. 389-419

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1990_1026062_0,
     author = {Habegger, Nathan and Lin, Xiao-Song},
     title = {The classification of links up to link-homotopy},
     journal = {Journal of the American Mathematical Society},
     pages = {389--419},
     publisher = {mathdoc},
     volume = {03},
     number = {2},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1026062-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1026062-0/}
}
TY  - JOUR
AU  - Habegger, Nathan
AU  - Lin, Xiao-Song
TI  - The classification of links up to link-homotopy
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 389
EP  - 419
VL  - 03
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1026062-0/
DO  - 10.1090/S0894-0347-1990-1026062-0
ID  - 10_1090_S0894_0347_1990_1026062_0
ER  - 
%0 Journal Article
%A Habegger, Nathan
%A Lin, Xiao-Song
%T The classification of links up to link-homotopy
%J Journal of the American Mathematical Society
%D 1990
%P 389-419
%V 03
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1026062-0/
%R 10.1090/S0894-0347-1990-1026062-0
%F 10_1090_S0894_0347_1990_1026062_0
Habegger, Nathan; Lin, Xiao-Song. The classification of links up to link-homotopy. Journal of the American Mathematical Society, Tome 03 (1990) no. 2, pp. 389-419. doi: 10.1090/S0894-0347-1990-1026062-0

[1] Artin, E. Theory of braids Ann. of Math. (2) 1947 101 126

[2] Baumslag, Gilbert Lecture notes on nilpotent groups 1971

[3] Birman, Joan S. Braids, links, and mapping class groups 1974

[4] Cochran, Tim D. Derivatives of links: Milnor’s concordance invariants and Massey’s products Mem. Amer. Math. Soc. 1990

[5] Goldsmith, Deborah Louise Homotopy of braids—in answer to a question of E. Artin 1974 91 96

[6] Goldsmith, Deborah L. Concordance implies homotopy for classical links in 𝑀³ Comment. Math. Helv. 1979 347 355

[7] Giffen, Charles H. Link concordance implies link homotopy Math. Scand. 1979 243 254

[8] Jones, Vaughan F. R. A polynomial invariant for knots via von Neumann algebras Bull. Amer. Math. Soc. (N.S.) 1985 103 111

[9] Levine, J. P. Surgery on links and the \overline𝜇-invariants Topology 1987 45 61

[10] Levine, J. P. An approach to homotopy classification of links Trans. Amer. Math. Soc. 1988 361 387

[11] Massey, W. S. Higher order linking numbers 1969 174 205

[12] Milnor, John Link groups Ann. of Math. (2) 1954 177 195

[13] Milnor, John Isotopy of links 1957 280 306

[14] Orr, Kent E. Homotopy invariants of links Invent. Math. 1989 379 394

[15] Porter, Richard Milnor’s 𝜇̄-invariants and Massey products Trans. Amer. Math. Soc. 1980 39 71

[16] Stallings, John Homology and central series of groups J. Algebra 1965 170 181

[17] Turaev, V. G. The Milnor invariants and Massey products Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1976

Cité par Sources :