A partition property of simplices in Euclidean space
Journal of the American Mathematical Society, Tome 03 (1990) no. 1, pp. 1-7

Voir la notice de l'article provenant de la source American Mathematical Society

Given the vertex set $A$ of a nondegenerate simplex in ${R^d}$, it is shown that for some positive $\varepsilon = \varepsilon (A)$ and every partition of ${R^n}$ into fewer than ${(1 + \varepsilon )^n}$ parts, one of the parts must contain a set congruent to $A$. This solves a fifteen-year-old problem of Erdös et al. [E].
@article{10_1090_S0894_0347_1990_1020148_2,
     author = {Frankl, P. and R\~A{\textparagraph}dl, V.},
     title = {A partition property of simplices in {Euclidean} space},
     journal = {Journal of the American Mathematical Society},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {03},
     number = {1},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1020148-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1020148-2/}
}
TY  - JOUR
AU  - Frankl, P.
AU  - Rödl, V.
TI  - A partition property of simplices in Euclidean space
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 1
EP  - 7
VL  - 03
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1020148-2/
DO  - 10.1090/S0894-0347-1990-1020148-2
ID  - 10_1090_S0894_0347_1990_1020148_2
ER  - 
%0 Journal Article
%A Frankl, P.
%A Rödl, V.
%T A partition property of simplices in Euclidean space
%J Journal of the American Mathematical Society
%D 1990
%P 1-7
%V 03
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1020148-2/
%R 10.1090/S0894-0347-1990-1020148-2
%F 10_1090_S0894_0347_1990_1020148_2
Frankl, P.; Rödl, V. A partition property of simplices in Euclidean space. Journal of the American Mathematical Society, Tome 03 (1990) no. 1, pp. 1-7. doi: 10.1090/S0894-0347-1990-1020148-2

[1] Erdå‘S, P., Graham, R. L., Montgomery, P., Rothschild, B. L., Spencer, J., Straus, E. G. Euclidean Ramsey theorems. I J. Combinatorial Theory Ser. A 1973 341 363

[2] Frankl, Peter, Rã¶Dl, Vojtä›Ch All triangles are Ramsey Trans. Amer. Math. Soc. 1986 777 779

[3] Frankl, Peter, Rã¶Dl, Vojtä›Ch Forbidden intersections Trans. Amer. Math. Soc. 1987 259 286

[4] Frankl, P., Rosenberg, I. G. A finite set intersection theorem European J. Combin. 1981 127 129

[5] Frankl, P., Wilson, R. M. Intersection theorems with geometric consequences Combinatorica 1981 357 368

[6] Graham, R. L. Old and new Euclidean Ramsey theorems 1985 20 30

[7] Graham, Ronald L. Rudiments of Ramsey theory 1981

[8] Rã¶Dl, Vojtä›Ch On a problem in combinatorial geometry Discrete Math. 1983 129 131

[9] Schoenberg, I. J. Metric spaces and positive definite functions Trans. Amer. Math. Soc. 1938 522 536

Cité par Sources :